Stable and Efficient Spectral Divide and Conquer Algorithms for the Symmetric Eigenvalue Decomposition and the SVD
暂无分享,去创建一个
[1] V. Strassen. Gaussian elimination is not optimal , 1969 .
[2] E. Denman,et al. A computational method for eigenvalues and eigenvectors of a matrix with real eigenvalues , 1973 .
[3] E. Denman,et al. The matrix sign function and computations in systems , 1976 .
[4] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[5] Tony F. Chan,et al. An Improved Algorithm for Computing the Singular Value Decomposition , 1982, TOMS.
[6] Gene H. Golub,et al. Matrix computations , 1983 .
[7] N. Higham. Computing the polar decomposition with applications , 1986 .
[8] S. Godunov. Problem of the dichotomy of the spectrum of a matrix , 1986 .
[9] S. Godunov,et al. Circular dichotomy of the spectrum of a matrix , 1988 .
[10] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[11] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[12] James Demmel,et al. Stability of block algorithms with fast level-3 BLAS , 1992, TOMS.
[13] L. Auslander,et al. On parallelizable eigensolvers , 1992 .
[14] A. Malyshev. Parallel Algorithm for Solving Some Spectral Problems of Linear Algebra , 1993 .
[15] James Demmel,et al. Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I , 1993, PPSC.
[16] Xiaobai Sun,et al. The PRISM project: infrastructure and algorithms for parallel eigensolvers , 1993, Proceedings of Scalable Parallel Libraries Conference.
[17] N. Higham. The matrix sign decomposition and its relation to the polar decomposition , 1994 .
[18] Nicholas J. Higham,et al. A NEW PARALLEL ALGORITHM FOR COMPUTING THE SINGULAR-VALUE DECOMPOSITION , 1994 .
[19] J. Demmel,et al. Inverse Free Parallel Spectral Divide and Conquer Algorithms for Nonsymmetric Eigenproblems , 1994 .
[20] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..
[21] Gene H. Golub,et al. Matrix Computations, Third Edition , 1996 .
[22] James Demmel,et al. The Spectral Decomposition of Nonsymmetric Matrices on Distributed Memory Parallel Computers , 1997, SIAM J. Sci. Comput..
[23] Steven Huss-Lederman,et al. A Parallelizable Eigensolver for Real Diagonalizable Matrices with Real Eigenvalues , 1997, SIAM J. Sci. Comput..
[24] J. Demmel,et al. Using the Matrix Sign Function to Compute Invariant Subspaces , 1998, SIAM J. Matrix Anal. Appl..
[25] S. Godunov. Modern Aspects of Linear Algebra , 1998 .
[26] H. Zha,et al. A Cubically Convergent Parallelizable Method for the Hermitian Eigenvalue Problem , 1998 .
[27] James Demmel,et al. LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.
[28] Jack Dongarra,et al. LAPACK Users' Guide, 3rd ed. , 1999 .
[29] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[30] Enrique S. Quintana-Ortí,et al. Parallel Spectral Division Using the Matrix Sign Function for the Generalized Eigenproblem , 2000, Int. J. High Speed Comput..
[31] Nicholas J. Higham,et al. A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra , 2000, SIAM J. Matrix Anal. Appl..
[32] Inderjit S. Dhillon,et al. Orthogonal Eigenvectors and Relative Gaps , 2003, SIAM J. Matrix Anal. Appl..
[33] Nicholas J. Higham,et al. Parallel Singular Value Decomposition via the Polar Decomposition , 2006 .
[34] Enrique S. Quintana-Ortí,et al. Specialized Spectral Division Algorithms for Generalized Eigenproblems Via the Inverse-Free Iteration , 2006, PARA.
[35] Ying,et al. FAST PARALLELIZABLE METHODS FOR COMPUTING INVARIANT SUBSPACES OF HERMITIAN MATRICES , 2007 .
[36] James Demmel,et al. Fast linear algebra is stable , 2006, Numerische Mathematik.
[37] James Demmel,et al. Algorithm 880: A testing infrastructure for symmetric tridiagonal eigensolvers , 2008, TOMS.
[38] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[39] Ralph Byers,et al. A New Scaling for Newton's Iteration for the Polar Decomposition and its Backward Stability , 2008, SIAM J. Matrix Anal. Appl..
[40] James Demmel,et al. Minimizing Communication for Eigenproblems and the Singular Value Decomposition , 2010, ArXiv.
[41] Paul Willems,et al. On MR3-type Algorithms for the Tridiagonal Symmetric Eigenproblem and the Bidiagonal SVD , 2018 .
[42] F. Mathematik. On MR 3 -type Algorithms for the Tridiagonal Symmetric Eigenproblem and the Bidiagonal SVD , 2010 .
[43] Zhaojun Bai,et al. Optimizing Halley's Iteration for Computing the Matrix Polar Decomposition , 2010, SIAM J. Matrix Anal. Appl..
[44] James Demmel,et al. Communication-optimal Parallel and Sequential Cholesky Decomposition , 2009, SIAM J. Sci. Comput..
[45] James Demmel,et al. CALU: A Communication Optimal LU Factorization Algorithm , 2011, SIAM J. Matrix Anal. Appl..
[46] James Demmel,et al. Minimizing Communication in Numerical Linear Algebra , 2009, SIAM J. Matrix Anal. Appl..
[47] James Demmel,et al. Communication-optimal Parallel and Sequential QR and LU Factorizations , 2008, SIAM J. Sci. Comput..
[48] Nicholas J. Higham,et al. Backward Stability of Iterations for Computing the Polar Decomposition , 2012, SIAM J. Matrix Anal. Appl..
[49] James Demmel,et al. LU Factorization with Panel Rank Revealing Pivoting and Its Communication Avoiding Version , 2012, SIAM J. Matrix Anal. Appl..