Learning mutational graphs of individual tumour evolution from single-cell and multi-region sequencing data

BackgroundA large number of algorithms is being developed to reconstruct evolutionary models of individual tumours from genome sequencing data. Most methods can analyze multiple samples collected either through bulk multi-region sequencing experiments or the sequencing of individual cancer cells. However, rarely the same method can support both data types.ResultsWe introduce TRaIT, a computational framework to infer mutational graphs that model the accumulation of multiple types of somatic alterations driving tumour evolution. Compared to other tools, TRaIT supports multi-region and single-cell sequencing data within the same statistical framework, and delivers expressive models that capture many complex evolutionary phenomena. TRaIT improves accuracy, robustness to data-specific errors and computational complexity compared to competing methods.ConclusionsWe show that the application of TRaIT to single-cell and multi-region cancer datasets can produce accurate and reliable models of single-tumour evolution, quantify the extent of intra-tumour heterogeneity and generate new testable experimental hypotheses.

[1]  A. Bouchard-Côté,et al.  PyClone: statistical inference of clonal population structure in cancer , 2014, Nature Methods.

[2]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[3]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[4]  Giancarlo Mauri,et al.  CAPRI: Efficient Inference of Cancer Progression Models from Cross-sectional Data , 2014, bioRxiv.

[5]  R. Gillies,et al.  Evolutionary dynamics of carcinogenesis and why targeted therapy does not work , 2012, Nature Reviews Cancer.

[6]  Niko Beerenwinkel,et al.  BitPhylogeny: a probabilistic framework for reconstructing intra-tumor phylogenies , 2015, Genome Biology.

[7]  J. Troge,et al.  Tumour evolution inferred by single-cell sequencing , 2011, Nature.

[8]  N. Navin,et al.  The first five years of single-cell cancer genomics and beyond , 2015, Genome research.

[9]  Alexandre Bouchard-Côté,et al.  Clonal genotype and population structure inference from single-cell tumor sequencing , 2016, Nature Methods.

[10]  Giulio Caravagna,et al.  Detecting repeated cancer evolution from multi-region tumor sequencing data , 2018, Nature Methods.

[11]  Nicolai J. Birkbak,et al.  Tracking the Evolution of Non‐Small‐Cell Lung Cancer , 2017, The New England journal of medicine.

[12]  Giancarlo Mauri,et al.  Parallel implementation of efficient search schemes for the inference of cancer progression models , 2016, 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).

[13]  Dae Hyun Kim,et al.  GNAQmutation in a patient with metastatic mucosal melanoma , 2014, BMC Cancer.

[14]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[15]  Nancy R. Zhang,et al.  Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing , 2016, Proceedings of the National Academy of Sciences.

[16]  N. McGranahan,et al.  The causes and consequences of genetic heterogeneity in cancer evolution , 2013, Nature.

[17]  Barbara L Parsons,et al.  Many different tumor types have polyclonal tumor origin: evidence and implications. , 2008, Mutation research.

[18]  Florian Markowetz,et al.  OncoNEM: inferring tumor evolution from single-cell sequencing data , 2016, Genome Biology.

[19]  Y. Kluger,et al.  TrAp: a tree approach for fingerprinting subclonal tumor composition , 2013, Nucleic acids research.

[20]  Alexandre Bouchard-Côté,et al.  ddClone: joint statistical inference of clonal populations from single cell and bulk tumour sequencing data , 2017, Genome Biology.

[21]  R. Prim Shortest connection networks and some generalizations , 1957 .

[22]  N. Navin,et al.  Clonal Evolution in Breast Cancer Revealed by Single Nucleus Genome Sequencing , 2014, Nature.

[23]  Benjamin J. Raphael,et al.  Reconstruction of clonal trees and tumor composition from multi-sample sequencing data , 2015, Bioinform..

[24]  Ken Chen,et al.  Genotyping tumor clones from single-cell data , 2016, Nature Methods.

[25]  Harold N. Gabow,et al.  Path-based depth-first search for strong and biconnected components , 2000, Inf. Process. Lett..

[26]  H. Luo,et al.  Colorectal Cancer Genetic Heterogeneity Delineated by Multi-Region Sequencing , 2016, PloS one.

[27]  Alexander Davis,et al.  Computing tumor trees from single cells , 2016, Genome Biology.

[28]  A. Schäffer,et al.  The evolution of tumour phylogenetics: principles and practice , 2017, Nature Reviews Genetics.

[29]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[30]  Christina Curtis,et al.  Inferring Tumor Phylogenies from Multi-region Sequencing. , 2016, Cell systems.

[31]  Z. Szallasi,et al.  Spatial and temporal diversity in genomic instability processes defines lung cancer evolution , 2014, Science.

[32]  Junfeng Wang,et al.  Inferring Clonal Composition from Multiple Sections of a Breast Cancer , 2014, PLoS Comput. Biol..

[33]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[34]  Benjamin J. Raphael,et al.  Inferring Intra-tumor Heterogeneity from High-Throughput DNA Sequencing Data , 2013, RECOMB.

[35]  James D. Brenton,et al.  Phylogenetic Quantification of Intra-tumour Heterogeneity , 2013, PLoS Comput. Biol..

[36]  Matthias Blum,et al.  miRmap web: comprehensive microRNA target prediction online , 2013, Nucleic Acids Res..

[37]  Ashwini Naik,et al.  Phylogenetic ctDNA analysis depicts early stage lung cancer evolution , 2017, Nature.

[38]  Ken Chen,et al.  SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models , 2017, Genome Biology.

[39]  Jing Ma,et al.  Roles of VEGF-C and Smad4 in the Lymphangiogenesis, Lymphatic Metastasis, and Prognosis in Colon Cancer , 2011, Journal of Gastrointestinal Surgery.

[40]  Zoltan Szallasi,et al.  Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal , 2018, Cell.

[41]  B. Tjaden,et al.  De novo assembly of bacterial transcriptomes from RNA-seq data , 2015, Genome Biology.

[42]  Richard Simon,et al.  Using single cell sequencing data to model the evolutionary history of a tumor , 2014, BMC Bioinformatics.

[43]  Jukka-Pekka Mecklin,et al.  SMAD4 as a Prognostic Marker in Colorectal Cancer , 2005, Clinical Cancer Research.

[44]  Giancarlo Mauri,et al.  Algorithmic methods to infer the evolutionary trajectories in cancer progression , 2015, Proceedings of the National Academy of Sciences.

[45]  Iman Hajirasouliha,et al.  Fast and scalable inference of multi-sample cancer lineages , 2014, Genome Biology.

[46]  Olivier Gascuel,et al.  Mathematical and computational evolutionary biology (2013). , 2015, Systematic biology.

[47]  Robert E. Tarjan,et al.  Finding optimum branchings , 1977, Networks.

[48]  Shankar Vembu,et al.  PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors , 2015, Genome Biology.

[49]  Benjamin J. Raphael,et al.  Inferring the Mutational History of a Tumor Using Multi-state Perfect Phylogeny Mixtures. , 2016, Cell systems.

[50]  P. Suppes A Probabilistic Theory Of Causality , 1970 .

[51]  A. Børresen-Dale,et al.  The Life History of 21 Breast Cancers , 2012, Cell.

[52]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[53]  Yu Cao,et al.  Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing , 2014, Science.

[54]  F. Markowetz,et al.  Cancer Evolution: Mathematical Models and Computational Inference , 2014, Systematic biology.

[55]  V. P. Collins,et al.  Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics , 2013, Proceedings of the National Academy of Sciences.

[56]  G. Mayhew,et al.  Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx Renal , 2018, Cell.

[57]  Shankar Vembu,et al.  Inferring clonal evolution of tumors from single nucleotide somatic mutations , 2012, BMC Bioinformatics.

[58]  C. Tyler-Smith,et al.  Ancient DNA and the rewriting of human history: be sparing with Occam’s razor , 2016, Genome Biology.

[59]  Daniele Ramazzotti,et al.  Modeling Cumulative Biological Phenomena with Suppes-Bayes Causal Networks , 2016, bioRxiv.

[60]  Daniele Ramazzotti,et al.  A Model of Selective Advantage for the Efficient Inference of Cancer Clonal Evolution , 2016, ArXiv.

[61]  W. Koh,et al.  Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics , 2014, Proceedings of the National Academy of Sciences.

[62]  Giancarlo Mauri,et al.  Inferring Tree Causal Models of Cancer Progression with Probability Raising , 2013, bioRxiv.

[63]  Andrew Menzies,et al.  Subclonal diversification of primary breast cancer revealed by multiregion sequencing , 2015, Nature Medicine.