Fatigue Behavior of Welded API 5L X70 Steel Used in Pipelines

[1]  Serkan Apay,et al.  Tozaltı Kaynak Yöntemi ile Farklı Kaynak Parametreleri Kullanılarak Birleştirilen API X70M PSL2 Malzemelerin Kaynak Bölgesinin İncelenmesi , 2018, Düzce Üniversitesi Bilim ve Teknoloji Dergisi.

[2]  E. Drexler,et al.  FATIGUE CRACK GROWTH RATES OF API X70 PIPELINE STEELS IN PRESSURIZED HYDROGEN GAS COMPARED WITH AN X52 PIPELINE IN HYDROGEN SERVICE | NIST , 2017 .

[3]  Zakir Tas,et al.  Examination Of Mechanical Properties And Weld Zone Of X70 Pipe Steel After Welding , 2017 .

[4]  Sinan Aksöz,et al.  TOZ ALTI KAYNAK YÖNTEMİYLE ÜRETİLEN API 5L X70 KALİTE ÇELİK BORULARIN MİKROYAPI VE MEKANİK ÖZELLİKLERİ , 2017 .

[5]  Liu Yu,et al.  Evaluation of the fracture toughness of X70 pipeline steel with ferrite-bainite microstructure , 2017 .

[6]  C. Munteanu,et al.  Study of fatigue behavior of longitudinal welded pipes , 2016 .

[7]  Hüsnü Yel Düzce Üniversitesi Bilim ve Teknoloji Dergisi , 2016 .

[8]  J. Bystrianský,et al.  FATIGUE BEHAVIOUR OF X70 STEEL IN CRUDE OIL , 2015 .

[9]  L. Godefroid,et al.  Microstructure and mechanical properties of two Api steels for iron ore pipelines , 2014 .

[10]  Mario Guagliano,et al.  Fatigue behavior of X70 microalloyed steel after severe shot peening , 2013 .

[11]  E. Poursaeidi,et al.  Life Estimate of a Compressor Blade through Fractography , 2013 .

[12]  Yakup Kaya,et al.  Tozaltı Ark Kaynak Yöntemi ile Birleştirilen X60, X65 ve X70 Çeliklerin Kaynak , 2013 .

[13]  Byoungchul Hwang,et al.  Fracture toughness analysis in transition temperature region of API X70 pipeline steels , 2006 .

[14]  Rl Meltzer,et al.  Effects of Stress Ratio on Fatigue Crack Growth Rates in X70 Pipeline Steel in Air and Saltwater , 1980 .