A signaling complex of adenylate cyclase CyaC of Sinorhizobium meliloti with cAMP and the transcriptional regulators Clr and CycR

[1]  P. Graumann,et al.  Tight Complex Formation of the Fumarate Sensing DcuS-DcuR Two-Component System at the Membrane and Target Promoter Search by Free DcuR Diffusion , 2022, mSphere.

[2]  G. Unden,et al.  L‐Aspartate as a high‐quality nitrogen source in Escherichia coli: Regulation of L‐aspartase by the nitrogen regulatory system and interaction of L‐aspartase with GlnB , 2020, Molecular microbiology.

[3]  G. Unden,et al.  CyaC, a redox‐regulated adenylate cyclase of Sinorhizobium meliloti with a quinone responsive diheme‐B membrane anchor domain , 2019, Molecular microbiology.

[4]  G. Unden,et al.  DcuA of aerobically grown Escherichia coli serves as a nitrogen shuttle (L‐aspartate/fumarate) for nitrogen uptake , 2018, Molecular microbiology.

[5]  A. Lupas,et al.  Adenylate cyclases: Receivers, transducers, and generators of signals. , 2018, Cellular signalling.

[6]  C. Tian,et al.  NsrA, a Predicted β-Barrel Outer Membrane Protein Involved in Plant Signal Perception and the Control of Secondary Infection in Sinorhizobium meliloti , 2018, Journal of bacteriology.

[7]  J. Batut,et al.  Transcriptomic Insight in the Control of Legume Root Secondary Infection by the Sinorhizobium meliloti Transcriptional Regulator Clr , 2017, Front. Microbiol..

[8]  C. Monzel,et al.  Conversion of the sensor kinase DcuS of Escherichia coli of the DcuB/DcuS sensor complex to the C4 -dicarboxylate responsive form by the transporter DcuB. , 2016, Environmental microbiology.

[9]  A. Becker,et al.  Cyclic mononucleotide- and Clr-dependent gene regulation in Sinorhizobium meliloti. , 2016, Microbiology.

[10]  T. Stehle,et al.  The NreA protein functions as a nitrate receptor in the staphylococcal nitrate regulation system. , 2014, Journal of molecular biology.

[11]  S. Hunke,et al.  The Sensor Kinase DctS Forms a Tripartite Sensor Unit with DctB and DctA for Sensing C4-Dicarboxylates in Bacillus subtilis , 2013, Journal of bacteriology.

[12]  J. Batut,et al.  Biochemical and functional characterization of SpdA, a 2′, 3′cyclic nucleotide phosphodiesterase from Sinorhizobium meliloti , 2013, BMC Microbiology.

[13]  J. Schultz,et al.  Regulated unfolding: a basic principle of intraprotein signaling in modular proteins. , 2013, Trends in biochemical sciences.

[14]  C. Griesinger,et al.  The cytoplasmic PASC domain of the sensor kinase DcuS of Escherichia coli: role in signal transduction, dimer formation, and DctA interaction , 2013, MicrobiologyOpen.

[15]  R. Reithmeier,et al.  Membrane transport metabolons. , 2012, Biochimica et biophysica acta.

[16]  C. Tian,et al.  Plant-activated bacterial receptor adenylate cyclases modulate epidermal infection in the Sinorhizobium meliloti–Medicago symbiosis , 2012, Proceedings of the National Academy of Sciences.

[17]  G. Unden,et al.  Anaerobic growth of Escherichia coli on d-tartrate depends on the fumarate carrier DcuB and fumarase, rather than the l-tartrate carrier TtdT and l-tartrate dehydratase , 2007, Archives of Microbiology.

[18]  D. Georgellis,et al.  Signaling by the arc two-component system provides a link between the redox state of the quinone pool and gene expression. , 2006, Antioxidants & redox signaling.

[19]  Raquel Tobes,et al.  The TetR Family of Transcriptional Repressors , 2005, Microbiology and Molecular Biology Reviews.

[20]  D. Georgellis,et al.  Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Schultz,et al.  The class III adenylyl cyclases: multi-purpose signalling modules. , 2003, Cellular signalling.

[22]  D. Gage,et al.  Control of Inducer Accumulation Plays a Key Role in Succinate-Mediated Catabolite Repression in Sinorhizobiummeliloti , 2002, Journal of bacteriology.

[23]  C. Lancaster,et al.  Succinate:quinone oxidoreductases: an overview. , 2002, Biochimica et biophysica acta.

[24]  A. Goffeau,et al.  Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[26]  Manfred Auer,et al.  Structure of fumarate reductase from Wolinella succinogenes at 2.2 Å resolution , 1999, Nature.

[27]  P. Kiley,et al.  Fe-S proteins in sensing and regulatory functions. , 1999, Current opinion in chemical biology.

[28]  W. Hillen,et al.  Carbon catabolite repression in bacteria. , 1999, Current opinion in microbiology.

[29]  D. Ladant,et al.  A bacterial two-hybrid system based on a reconstituted signal transduction pathway. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S. Busby,et al.  Regulation of transcription initiation at the Escherichia coli nir operon promoter: a new mechanism to account for co‐dependence on two transcription factors , 1998, Molecular microbiology.

[31]  S R Sprang,et al.  Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. , 1997, Science.

[32]  J. Walker,et al.  Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. , 1996, Journal of molecular biology.

[33]  S. Garges A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. By Jeffrey H. Miller. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1992. , 1993 .

[34]  S. Busby,et al.  Definition of nitrite and nitrate response elements at the anaerobically inducible Escherichia coli nirB promoter: interactions between FNR and NarL , 1993, Molecular microbiology.

[35]  W. Reznikoff,et al.  The lactose operon‐controlling elements: a complex paradigm , 1992, Molecular microbiology.

[36]  F. Studier,et al.  Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. , 1986, Journal of molecular biology.

[37]  J. Gancedo,et al.  Biological roles of cAMP: similarities and differences between organisms , 1985 .

[38]  E. Signer,et al.  Catabolite-repression-like phenomenon in Rhizobium meliloti , 1978, Journal of bacteriology.

[39]  I. Pastan,et al.  Cyclic adenosine 5'-monophosphate in Escherichia coli , 1976 .

[40]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[41]  Jeffrey Green,et al.  Functional versatility in the CRP-FNR superfamily of transcription factors: FNR and FLP. , 2001, Advances in microbial physiology.

[42]  S. Harrison,et al.  DNA recognition by proteins with the helix-turn-helix motif. , 1990, Annual review of biochemistry.