The Poisson equation in homogeneous Sobolev spaces

We consider Poisson’s equation in an n-dimensional exterior domain G( n≥ 2) with a sufficiently smooth boundary. We prove that for external forces and boundary values given in certain L q (G)-spaces there exists a solution in the homogeneous Sobolev space S 2,q (G), containing functions being local in L q (G) and having second-order derivatives in L q (G). Concerning the uniqueness of this solution we prove that the corresponding nullspace has the dimension n + 1, independent of q.

[1]  P. Deuring The resolvent problem for the stokes system in exterior domains: An elementary approach , 1990 .

[2]  J. Deny,et al.  Les espaces du type de Beppo Levi , 1954 .

[3]  Peter Werner,et al.  Über das Dirichletsche Außenraumproblem für die Helmholtzsche Schwingungsgleichung , 1965 .

[4]  V. Smirnov Lehrgang der höheren mathematik , 1963 .

[5]  A. Zygmund On Singular Integrals , 1956 .

[6]  C. Simader,et al.  On Dirichlet's Boundary Value Problem , 1972 .

[7]  W. Varnhorn The poisson equation with weights in exterior domains of Rn , 1992 .

[8]  F. John Partial differential equations , 1967 .

[9]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[10]  R. Kress,et al.  On an integral equation for the two-dimensional exterior Stokes problem☆ , 1985 .

[11]  R. Leis Zur Eindeutigkeit der Randwertaufgaben der Helmholtzschen Schwingungsgleichung , 1964 .

[12]  J. Giroire Etude de quelques problèmes aux limites extérieurs et résolution par équations intégrales , 1987 .

[13]  R. McOwen The behavior of the laplacian on weighted sobolev spaces , 1979 .

[14]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[15]  N. M. Gi︠u︡nter,et al.  Die Potentialtheorie und ihre Anwendung auf Grundaufgaben der mathematischen Physik , 1957 .

[16]  C. Simader,et al.  The Dirichlet problem for the Laplacian in bounded and unbounded domains : a new approach to weak, strong and (2+k)-solutions in Sobolev-type spaces , 1996 .

[17]  K. Maruhn,et al.  Günter, N.M. Die Potentialtheorie und ihre Anwendung auf Grundaufgaben der mathematischen Physik. X + 342 S. Leipzig 1957. B. G. Teubner Verlagsges. Preis 18,— DM (Kunstleder) , 1958 .