The chemical composition of metal-poor emission-line galaxies in the Data Release 3 of the Sloan Digital Sky Survey

We have re-evaluated empirical expressions for the abundance determination of N, O, Ne, S, Cl, Ar and Fe taking into account the latest atomic data and constructing an appropriate grid of photoionization models with state-of-the art model atmospheres. Using these expressions we have derived heavy element abundances in the ∼310 emission-line galaxies from the Data Release 3 of the Sloan Digital Sky Survey (SDSS) with an observed Hβ flux F(Hβ) > 10 −14 erg s −1 cm −2 and for which the [O iii] λ4363 emission line was detected at least at a 2σ level, allowing abundance determination by direct methods. The oxygen abundance 12 + log O/H of the SDSS galaxies lies in the range from ∼7.1 (Z� /30) to ∼8.5 (0.7 Z� ). The SDSS sample is merged with a sample of 109 blue compact dwarf (BCD) galaxies with high quality spectra, which contains extremely low-metallicity objects. We use the merged sample to study the abundance patterns of low-metallicity emission-line galaxies. We find that extremely metal-poor galaxies (12 + log O/H –1.6, implying that they have a different nature than the subsample of high-redshift damped Lyα systems with log N/ Oo f∼–2.3 and that their ages are larger than 100–300 Myr. We confirm the apparent increase in N/O with decreasing EW(Hβ), already shown in previous studies, and explain it as the signature of gradual nitrogen ejection by massive stars from the most recent starburst.

[1]  R. Rubin,et al.  The [Fe IV] Discrepancy: Constraining the Iron Abundances in Nebulae , 2005, astro-ph/0504131.

[2]  G. Stasińska Biases in abundance derivations for metal-rich nebulae , 2005, astro-ph/0501574.

[3]  Aniruddha R. Thakar,et al.  The Third Data Release of the Sloan Digital Sky Survey , 2004 .

[4]  V. Panchuk,et al.  Chemical abundances of 10 metal-poor halo stars , 2004 .

[5]  C. Vuissoz,et al.  New estimates of the contribution of Wolf-Rayet stellar winds to the Galactic 26 Al , 2004, astro-ph/0409580.

[6]  T. Beers,et al.  First stars VI - Abundances of C, N, O, Li, and mixing in extremely metal-poor giants. Galactic evolution of the light elements , 2004, astro-ph/0409536.

[7]  T. Thuan,et al.  Deep Hubble Space Telescope ACS Observations of I Zw 18: a Young Galaxy in Formation , 2004, astro-ph/0408391.

[8]  G. Meynet,et al.  Stellar evolution with rotation XI. Wolf-Rayet star populations at different metallicities , 2004, astro-ph/0408319.

[9]  E. Grebel,et al.  Strong Emission Line H II Galaxies in the Sloan Digital Sky Survey. I. Catalog of DR1 Objects with Oxygen Abundances from Te Measurements , 2004, astro-ph/0404133.

[10]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[11]  Italy.,et al.  A comprehensive set of elemental abundances in damped Lyα systems: Revealing the nature of these high-redshift galaxies , 2003, astro-ph/0312210.

[12]  Kyiv,et al.  Abundance patterns in the low-metallicity emission-line galaxies from the Early Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0311564.

[13]  T. Thuan,et al.  Systematic Effects and a New Determination of the Primordial Abundance of 4He and dY/dZ from Observations of Blue Compact Galaxies , 2003, astro-ph/0310421.

[14]  J. Brinkmann,et al.  Discovery of Eight New Extremely Metal-poor Galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0307401.

[15]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[16]  Tucson,et al.  Spectroscopic and photometric studies of low-metallicity star-forming dwarf galaxies - III. SBS 1415+437 , 2003, astro-ph/0306166.

[17]  J. Brinkmann,et al.  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[18]  P. Molaro,et al.  Early stages of Nitrogen enrichment in galaxies: Clues from measurements in damped Lyman alpha systems , 2003, astro-ph/0302032.

[19]  Kyiv,et al.  The emission line sequence of H II galaxies , 2002, astro-ph/0301442.

[20]  Linda J. Smith,et al.  Realistic ionizing fluxes for young stellar populations from 0.05 to 2 Z , 2002, astro-ph/0207554.

[21]  Y. Takeda Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines , 2001, astro-ph/0105215.

[22]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[23]  J. Köppen,et al.  On the Cosmic Origins of Carbon and Nitrogen , 2000, astro-ph/0004299.

[24]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[25]  T. Thuan,et al.  Heavy-Element Abundances in Blue Compact Galaxies , 1998, astro-ph/9811387.

[26]  C. Ramsbottom,et al.  Effective collision strengths for electron-impact excitation of singly ionized sulfur , 1996 .

[27]  V. Lipovetsky,et al.  Heavy element abundances in a new sample of low-metallicity blue compact galaxies , 1995 .

[28]  V. Lipovetsky,et al.  The Primordial helium abundance from a new sample of metal-deficient blue compact galaxies , 1994 .

[29]  D. Garnett Electron temperature variations and the measurement of nebular abundances , 1992 .

[30]  D. Garnett Nitrogen in irregular galaxies , 1990 .

[31]  J. B. Oke Faint Spectrophotometric Standard Stars , 1990 .

[32]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .

[33]  A. Whitford The law of interstellar reddening. , 1958 .

[34]  P. Papaderos,et al.  Spectroscopic and photometric studies of low-metallicity star-forming dwarf galaxies , 2003 .

[35]  V. Lipovetsky,et al.  The Primordial Helium Abundance: Systematic Effects and a New Determination , 1997 .

[36]  Lawrence H. Aller,et al.  Physics of thermal gaseous nebulae , 1984 .