Robust design of quantum potential profile for electron transmission in semiconductor nanodevices

In this paper we address the robust design of the quantum potential profile in a in semiconductor nanodevice to achieve a desired electron transmission coefficient vs. bias voltage characteristic despite uncertainty. We formulate an optimization problem which is solved locally via a sequential linear program.

[1]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[2]  Eli Yablonovitch,et al.  Modeling, Design, and Optimization of a Solid State Electron Spin Qubit , 2005, SIAM J. Appl. Math..

[3]  P. Michler Single quantum dots : fundamentals, applications, and new concepts , 2003 .

[4]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[5]  Claudio Perez Tamargo Can one hear the shape of a drum , 2008 .

[6]  P. Dollfus,et al.  On the ballistic transport in nanometer-scaled DG MOSFETs , 2003, IEEE Transactions on Electron Devices.

[7]  Stephan Haas,et al.  Adaptive quantum design of atomic clusters , 2004 .

[8]  Orest J. Glembocki Nanoparticles and nanowire buildings blocks--synthesis, processing, characterization and theory : symposium held April 13-16, 2004, San Francisco, California, U.S.A. , 2004 .

[9]  Stephan Haas,et al.  Synthesis of electron transmission in nanoscale semiconductor devices , 2006 .

[10]  Moody T. Chu,et al.  Inverse Eigenvalue Problems , 1998, SIAM Rev..

[11]  Robert L. Kosut,et al.  Topology of optimally controlled quantum mechanical transition probability landscapes , 2006 .

[12]  A. F. J. Levi,et al.  Applied Quantum Mechanics , 2003 .

[13]  Ramakrishna,et al.  Optimally designed potentials for control of electron-wave scattering in semiconductor nanodevices. , 1994, Physical review. B, Condensed matter.

[14]  Shyh Wang,et al.  Fundamentals of semiconductor theory and device physics , 1989 .