Micro-extraction and determination of transition metals in historical ink

[1]  J. G. Neevel Application Issues of the Bathophenanthroline Test for Iron(II) Ions , 2009 .

[2]  G. Piantanida,et al.  All that is iron‐ink is not always iron‐gall! , 2008 .

[3]  A. Potthast,et al.  Iron gall ink-induced corrosion of cellulose: aging, degradation and stabilization. Part 1: model paper studies , 2008 .

[4]  A. Potthast,et al.  Iron gall ink-induced corrosion of cellulose: aging, degradation and stabilization. Part 2: application on historic sample material , 2008 .

[5]  A. Agostino,et al.  The Vercelli Gospels laid open: an investigation into the inks used to write the oldest Gospels in Latin , 2008 .

[6]  I. Leito,et al.  Estimation of uncertainty in electron probe microanalysis: iron determination in manuscripts, a case study , 2008 .

[7]  E. Cloutis,et al.  Identification of darkened pigments in cultural objects by graphite furnace atomic absorption spectroscopy and inductively coupled plasma-mass spectrometry , 2007 .

[8]  N. Civici Non-destructive identification of inorganic pigments used in 16–17th century Albanian icons by total reflection X-ray fluorescence analysis , 2006 .

[9]  Mitja Uršič,et al.  Analysis of iron gall inks by PIXE , 2006 .

[10]  Matija Strlič,et al.  Historical iron gall ink containing documents — Properties affecting their condition , 2006 .

[11]  R. J. Clark,et al.  Identification of pigments used on late 17th century Albanian icons by total reflection X-ray fluorescence and Raman microscopy , 2005 .

[12]  E. Bulska,et al.  On the use of laser ablation inductively coupled plasma mass spectrometry for the investigation of the written heritage , 2004 .

[13]  A. Wattiaux,et al.  The impact of gallic acid on iron gall ink corrosion , 2004 .

[14]  Burkhard Beckhoff,et al.  Characterization of iron‐gall inks in historical manuscripts and music compositions using x‐ray fluorescence spectrometry , 2004 .

[15]  M. Attas,et al.  Pigment identification in artwork using graphite furnace atomic absorption spectrometry. , 2004, Talanta.

[16]  Zdravko Rupnik,et al.  In-air PIXE set-up for automatic analysis of historical document inks , 2004 .

[17]  A. Hulanicki,et al.  Topochemical investigation of ancient manuscripts , 2001, Fresenius' journal of analytical chemistry.

[18]  Franco Lucarelli,et al.  Distribution of Chemical Elements of Iron-Gall Ink Writing Studied by the PIXE Method , 2001 .

[19]  W. Wegscheider,et al.  Use of atomic spectrometry for the investigationof ancient manuscripts , 2001 .

[20]  Guido Van Hooydonk,et al.  Investigation of pigments in medieval manuscripts by micro raman spectroscopy and total reflection X-ray fluorescence spectrometry , 1999 .

[21]  Luc Moens,et al.  Pigment investigation of a late-medieval manuscript with total reflection X-ray fluorescence and micro-Raman spectroscopy , 1999 .

[22]  Guido Van Hooydonk,et al.  A TXRF and Micro‐Raman Spectrometric Reconstruction of Palettes for Distinguishing Between Scriptoria of Related Medieval Manuscripts , 1998 .

[23]  Franco Lucarelli,et al.  Recent applications to the study of ancient inks with the Florence external-PIXE facility , 1996 .

[24]  JOHAN G. NEEVEL,et al.  Phytate: a Potential Conservation Agent for the Treatment of Ink Corrosion Caused by Irongall Inks , 1995 .

[25]  S. Akman,et al.  Interference mechanisms of sodium chloride on zinc and cobalt in graphite furnace atomic absorption spectrometry using a dual cavity platform , 1994 .

[26]  Franco Lucarelli,et al.  A methodological test of external beam PIXE analysis on inks of ancient manuscripts , 1993 .

[27]  L. Lamberts,et al.  Direct determination of iron in urine and serum using graphite furnace atomic absorption spectrometry. , 1989, The Analyst.