Lithium-modified (K0.5Na0.5)NbO3–BiAlO3 lead-free piezoelectric ceramics with high Curie temperature

Abstract Lead-free piezoelectric ceramics based on the perovskite solid solution 0.995(K0.5Na0.5)1−xLixNbO3–0.005BiAlO3 were prepared using conventional solid-state sintering techniques. According to the analysis of X-ray diffraction patterns, a pure perovskite phase structure could be achieved in the studied composition range of 0≤x≤0.08. As the lithium content increased, the crystal structure gradually transitioned from orthorhombic to tetragonal symmetry. Furthermore, an orthorhombic–tetragonal phase boundary could be observed in ceramics with the compositions of 0.03≤x≤0.05. The ceramics with compositions close to the orthorhombic–tetragonal phase boundary exhibited enhanced piezoelectric activity, possessing the largest values of piezoelectric constant d33, and planar and thickness electromechanical coupling coefficients, of 182 pC/N, 0.375, and 0.460, respectively. Additionally, it was found that these ceramics with excellent piezoelectric properties also possessed a high Curie temperature (~ 450 °C), indicating that they would be suitable for application in elevated-temperature piezoelectric devices.

[1]  J. Zhai,et al.  Effect of BiMeO3 on the Phase Structure, Ferroelectric Stability, and Properties of Lead‐Free Bi0.5(Na0.80K0.20)0.5TiO3 Ceramics , 2014 .

[2]  Jianguo Zhu,et al.  Composition induced rhombohedral–tetragonal phase boundary in BaZrO3 modified (K0.445Na0.50Li0.055)NbO3 lead-free ceramics , 2014 .

[3]  H. Duan,et al.  Phase transition and piezoelectric properties of dense (K0.48,Na0.52)0.95Li0.05SbxNb(1−x)O3-0.03Ca0.5(Bi0.5,Na0.5)0.5ZrO3 lead free ceramics , 2016 .

[4]  Nicola A. Spaldin,et al.  Theoretical Prediction of New High-Performance Lead-Free Piezoelectrics , 2005 .

[5]  Ruiping Wang,et al.  Effects of A-Site Ions on the Phase Transition Temperatures and Dielectric Properties of (1-x)(Na0.5K0.5)NbO3–xAZrO3 Solid Solutions , 2011 .

[6]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[7]  Y. Liu,et al.  Effects of BiAlO3 on structure and electrical properties of K0.5Na0.5NbO3–LiSbO3 lead-free piezoceramics , 2011 .

[8]  Laijun Liu,et al.  Dielectric properties of BiAlO3-modified (Na, K, Li)NbO3 lead-free ceramics , 2016 .

[9]  A. Safari,et al.  Dielectric and piezoelectric properties of Cu2+-doped alkali Niobates , 2009 .

[10]  H. A. Moghadam,et al.  Investigation of nano particle additives on lithium doped KNN lead free piezoelectric ceramics , 2011 .

[11]  M. Okada,et al.  Synthesis of Bi(FexAl1-x)O3 thin films by pulsed laser deposition and its structural characterization , 2004 .

[12]  Prasanta Kumar Panda,et al.  PZT to Lead Free Piezo Ceramics: A Review , 2015 .

[13]  Jianguo Zhu,et al.  Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. , 2015, Chemical reviews.

[14]  Ruiping Wang,et al.  Tuning the orthorhombic–rhombohedral phase transition temperature in sodium potassium niobate by incorporating barium zirconate , 2009 .

[15]  Thomas R. Shrout,et al.  Characterization of lead free (K0.5Na0.5)NbO3–LiSbO3 piezoceramic , 2007 .

[16]  Epitaxial BiAlO3 thin film as a lead-free ferroelectric material , 2008 .

[17]  N. Setter,et al.  Temperature stability of the piezoelectric properties of Li-modified KNN ceramics , 2007 .

[18]  Doru C. Lupascu,et al.  Temperature‐Insensitive (K,Na)NbO3‐Based Lead‐Free Piezoactuator Ceramics , 2013 .

[19]  R. Zuo,et al.  Phase transition and electrical properties of lead free (Na0.5K0.5)NbO3–BiAlO3 ceramics , 2009 .

[20]  R. Zuo,et al.  Polymorphic phase transition and enhanced piezoelectric properties of LiTaO3-modified (Na0.52K0.48) (Nb0.93Sb0.07)O3 lead-free ceramics , 2009 .

[21]  Jianguo Zhu,et al.  Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. , 2014, Journal of the American Chemical Society.

[22]  Zhi Tan,et al.  Phase structure and piezoelectric properties of (1−x)K0.48Na0.52Nb0.95Sb0.05O3-x(Bi0.5Na0.5)0.9(Li0.5Ce0.5)0.1ZrO3 lead-free piezoelectric ceramics , 2016 .

[23]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[24]  R. Zuo,et al.  Antimony Tuned Rhombohedral-Orthorhombic Phase Transition and Enhanced Piezoelectric Properties in Sodium Potassium Niobate , 2010 .

[25]  Jianguo Zhu,et al.  Potassium–sodium niobate lead-free ceramics: modified strain as well as piezoelectricity , 2015 .

[26]  X. Chao,et al.  Electrical properties and low temperature sintering of BiAlO3 doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics , 2015, Journal of Materials Science: Materials in Electronics.

[27]  D. Xiao,et al.  Temperature stability, phase structure and electrical behavior of Li-modified 0.99(K0.48Na0.52)NbO3–0.01BiCoO3 piezoelectric ceramics , 2014 .

[28]  Kazuhiro Mori,et al.  High-pressure synthesis, crystal structures, and properties of perovskite-like BiAlO3 and pyroxene-like BiGaO3 , 2006 .

[29]  Zhi-Qian Chen,et al.  Phase transitional behavior and electrical properties of (1 − x)(K0.475Na0.48Li0.05)Nb0.95Sb0.05O3–xCaZrO3 lead-free ceramics , 2016 .

[30]  Peng Liu,et al.  Effects of BiAlO3-doping on dielectric and ferroelectric properties of 0.93Na0.5Bi0.5TiO3–0.07BaTiO3 lead-free ceramics , 2015 .

[31]  A. del Campo,et al.  Lead-Free Piezoceramics: Revealing the Role of the Rhombohedral-Tetragonal Phase Coexistence in Enhancement of the Piezoelectric Properties. , 2015, ACS applied materials & interfaces.

[32]  Jingfeng Li,et al.  Domain Engineering of Lead‐Free Li‐Modified (K,Na)NbO3 Polycrystals with Highly Enhanced Piezoelectricity , 2010 .

[33]  J. Zhai,et al.  New Insight on Sintering Progress of KNN‐Based Lead‐Free Ceramics , 2016 .