Bio-inspired method based on bone architecture to optimize the structure of mechanical workspieces

Nowadays, additive manufacturing processes greatly simplify the production of openwork workpiece providing new opportunities for workpieces design. Based on Nature knowledge, a new bio-inspired workpiece structural optimization approach is presented in this paper. This approach is derived from bones structure. The aim of this method is to reduce the workpiece weight maintaining an acceptable resistance. Like in bones, the porosity of the part to optimize was controlled by a bio-inspired method as function of the local stress field. Shape, size and orientation of the porosities were derived from bone structure; two main strategies were used: one inspired of avian species and other inspired of terrestrial mammalian. Subsequently, to validate this method, an experimental test was carried out for comparing a topological optimization and the proposed bio-inspired designs. This test was conducted on a beam part in 2.5D subjected to a static three-point bending with 65% of density. Three beams were manufactured by 3D metal printing: two bio-inspired beams (terrestrial mammalian and avian species) and the last designed using a topological optimization method. Experimental test results demonstrated the usefulness of the proposed method. This bio-inspired structural optimization approach opens up new prospects in design of openwork workpiece.

[1]  Satoshi Yamada,et al.  Structural strength of cancellous specimens from bovine femur under cyclic compression , 2016, PeerJ.

[2]  Michel Laurin,et al.  Bone microanatomy and lifestyle: A descriptive approach , 2011 .

[3]  Tomonori Yamada,et al.  Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff's law. , 2009, Journal of biomechanics.

[4]  Jean Mailhé,et al.  Design optimization using Statistical Confidence Boundaries of response surfaces: Application to robust design of a biomedical implant , 2014 .

[5]  Lin Lu,et al.  Anisotropic porous structure modeling for 3D printed objects , 2018, Comput. Graph..

[6]  Shoji Hayashi,et al.  Biomechanical evolution of solid bones in large animals: a microanatomical investigation , 2016 .

[7]  Christopher Boyle,et al.  Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization. , 2011, Journal of biomechanics.

[8]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[9]  L. Gibson Biomechanics of cellular solids. , 2005, Journal of biomechanics.

[10]  Steve Weiner,et al.  Inter-trabecular angle: A parameter of trabecular bone architecture in the human proximal femur that reveals underlying topological motifs. , 2016, Acta biomaterialia.

[11]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[12]  D M Nunamaker,et al.  Contact area and static pressure profile at the plate-bone interface in the nonluted and luted bone plate. , 1995, Veterinary surgery : VS.

[13]  M. Berveiller,et al.  The problem of two plastic and heterogeneous inclusions in an anisotropic medium , 1987 .

[14]  T. Ryan,et al.  Trabecular bone microstructure scales allometrically in the primate humerus and femur , 2013, Proceedings of the Royal Society B: Biological Sciences.

[15]  Taiji Adachi,et al.  Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state. , 2002, Journal of biomechanics.

[16]  Jami J. Shah,et al.  Design of complex bone internal structure using topology optimization with perimeter control , 2018, Comput. Biol. Medicine.

[17]  P. Pimienta,et al.  Mechanical Properties , 2018, Bainite in Steels.

[18]  Michel Laurin,et al.  Microstructural features of the femur in early ophiacodontids: A reappraisal of ancestral habitat use and lifestyle of amniotes , 2016 .

[19]  R Huiskes,et al.  If bone is the answer, then what is the question? , 2000, Journal of anatomy.

[20]  Michel Laurin,et al.  Données microanatomiques sur la conquête de l'environnement terrestre par les vertébrés , 2006 .

[21]  Stuart H. Ralston Bone structure and metabolism , 2009 .

[22]  Ralph Müller,et al.  Densitometric, morphometric and mechanical distributions in the human proximal femur. , 2007, Journal of biomechanics.

[23]  W. Lu,et al.  Optimisation of functionally graded lattice structures using isostatic lines , 2017 .

[24]  G H van Lenthe,et al.  Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties. , 2006, Bone.

[25]  Sandra J. Shefelbine,et al.  Trabecular bone scales allometrically in mammals and birds , 2011, Proceedings of the Royal Society B: Biological Sciences.

[26]  Michel Laurin,et al.  Gradual adaptation of bone structure to aquatic lifestyle in extinct sloths from Peru , 2014, Proceedings of the Royal Society B: Biological Sciences.

[27]  Harun H Bayraktar,et al.  Shear strength behavior of human trabecular bone. , 2012, Journal of biomechanics.