Quantum Feynman-Kac perturbations

We develop fully noncommutative Feynman-Kac formulae by employing quantum stochastic processes. To this end we establish some theory for perturbing quantum stochastic flows on von Neumann algebras by multiplier cocycles. Multiplier cocycles are constructed via quantum stochastic differential equations whose coefficients are driven by the flow. The resulting class of cocycles is characterised under alternative assumptions of separability or Markov regularity. Our results generalise those obtained using classical Brownian motion on the one hand, and results for unitarily implemented flows on the other.

[1]  M. Fannes,et al.  Dilations of quantum dynamical semigroups with classical Brownian motion , 1987 .

[2]  K. Parthasarathy,et al.  Representation of a class of quantum martingales II , 1988 .

[3]  W. Arveson Noncommutative Dynamics and E-Semigroups , 2003 .

[4]  S. Wills,et al.  Quantum stochastic cocycles and completely bounded semigroups on operator spaces , 2010, 2012.05635.

[5]  Quantum Stochastic Analysis – an Introduction , 2005 .

[6]  W. Arveson Ten Lectures On Operator Algebras , 1984 .

[7]  Debashish Goswami,et al.  Hilbert Modules and Stochastic Dilation of a Quantum Dynamical Semigroup on a von Neumann Algebra , 1999 .

[8]  Lectures on Operator Algebras , 1972 .

[9]  Erik Christensen,et al.  Cohomology of Operator Algebras and Quantum Dynamical Semigroups , 1979 .

[10]  S. Wills,et al.  A stochastic Stinespring Theorem , 2001 .

[11]  Homomorphic Feller Cocycles on a C*‐Algebra , 2003 .

[12]  J. T Lewis,et al.  Quantum stochastic processes I , 1981 .

[13]  Debashish Goswami Quantum Group of Isometries in Classical and Noncommutative Geometry , 2007, 0704.0041.

[14]  Luigi Accardi,et al.  On the quantum Feynman-Kac formula , 1978 .

[15]  E. Davies,et al.  One-parameter semigroups , 1980 .

[16]  S. Wills,et al.  Markovian Cocycles on Operator Algebras Adapted to a Fock Filtration , 2000 .

[17]  A Simple Singular Quantum Markov Semigroup , 2000 .

[18]  P. Meyer,et al.  Quantum Probability for Probabilists , 1993 .

[19]  Debashish Goswami,et al.  Quantum Stochastic Processes and Noncommutative Geometry , 2007 .

[20]  C. Foias,et al.  The commutant lifting approach to interpolation problems , 1990 .

[21]  S. Wills,et al.  Dilation of Markovian cocycles on a von Neumann algebra , 2003 .

[22]  Robin L. Hudson,et al.  Time-orthogonal unitary dilations and noncommutative Feynman-Kac formulae , 1982 .

[23]  K.R Parthasarathy,et al.  Stochastic Integral Representation of Bounded Quantum Martingales in Fock Space , 1986 .

[24]  Existence of Feller Cocycles on a C*‐Algebra , 2001 .

[25]  A. Belton,et al.  A vacuum-adapted approach to quantum Feynman-Kac formulae , 2012, 1202.5241.

[26]  A. Belton Quantum Ω-semimartingales and stochastic evolutions , 2001 .

[27]  L. Accardi,et al.  On the Structure of Classical and Quantum Flows , 1996 .

[28]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[30]  Feynman–Kac Representation of Some Noncommutative Elliptic Operators , 1997 .