Atomic Clocks and Oscillators for Deep-Space Navigation and Radio Science

This paper describes new oscillator and atomic clock technologies that, when combined, create a master oscillator for use in deep-space navigation and science measurements. This atomic clock promises to execute spacecraft navigation using a one-way downlink only method, saving many millions of dollars per year. We will describe the complementary technology developments by the Jet Propulsion Laboratory toward a space-ready mercury atomic-ion clock and by the Applied Physics Laboratory, Johns Hopkins University, in reducing the size, mass, and operating power of its quartz, ultrastable oscillator.

[1]  D. Plettemeier,et al.  Winds on Titan from ground‐based tracking of the Huygens probe , 2006 .

[2]  Luciano Iess,et al.  Spacecraft Doppler tracking: Noise budget and accuracy achievable in precision radio science observations , 2005 .

[3]  Catherine L. Thornton,et al.  Radiometric Tracking Techniques for Deep Space Navigation: Thornton/Radiometric Tracking Techniques , 2005 .

[4]  Andrew Holmes-Siedle,et al.  Handbook of Radiation Effects , 1993 .

[5]  Robert A. Nelson,et al.  Relativistic Transformations for Time Synchronization and Dissemination in the Solar System , 2006 .

[6]  A. Jornod,et al.  The 35 kg space active hydrogen maser (SHM-35) for ACES , 2003, IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003. Proceedings of the 2003.

[7]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[8]  L. A. Cangahuala Interplanetary navigation overview , 2000, Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No.00CH37052).

[9]  Frank G. Lemoine,et al.  An improved solution of the gravity field of Mars (GMM‐2B) from Mars Global Surveyor , 2001 .

[10]  R.C. Schulze,et al.  The RF telecommunications system for the New Horizons mission to Pluto , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[11]  Alan B. Tanner,et al.  Atmospheric Media Calibration for the Deep Space Network , 2007, Proceedings of the IEEE.

[12]  Lute Maleki,et al.  Stability measurements between Hg/sup +/ lite 12-pole clocks , 2002, Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition (Cat. No.02CH37234).

[13]  F. G. Major,et al.  Magnetic hyperfine spectrum of isolated (199Hg)+ Ions , 1978 .

[14]  Lute Maleki,et al.  Precision Clocks in Space and α-Variations , 2004 .

[15]  Jeff B. Berner,et al.  Range Measurement as Practiced in the Deep Space Network , 2007, Proceedings of the IEEE.

[16]  A. Presser,et al.  Examination of a crystal oscillator's frequency fluctuations during the enhanced space-radiation environment of a solar flare , 2002 .

[17]  S. W. Asmar,et al.  Ultra-stable oscillators for radio science investigations on planetary entry probes , 2003 .

[18]  W. J. Riley,et al.  EARLY IN-ORBIT PERFORMANCE OF GPS BLOCK IIR RUBIDIUM CLOCKS , 1997 .

[19]  H. Dehmelt,et al.  Radiofrequency Spectroscopy of Stored Ions I: Storage , 1968 .

[20]  L. Maleki,et al.  New ion trap for frequency standard applications , 1989 .

[21]  David H. Atkinson,et al.  The Galileo Probe Doppler Wind Experiment: Measurement of the deep zonal winds on Jupiter , 1998 .

[22]  L. Maleki,et al.  Progress Toward a 10-15 Stable Ion Clock for Deep Space Applications , 2006, 2006 IEEE International Frequency Control Symposium and Exposition.

[23]  M. W. Levine,et al.  A test of the equivalence principle using a space-borne clock , 1979 .

[24]  Catherine L. Thornton,et al.  Radiometric Tracking Techniques for Deep-Space Navigation , 2003 .

[25]  William J. Riley Rubidium atomic frequency standards for GPS Block IIR , 1990 .

[26]  James S. Border,et al.  Angular Position Determination of Spacecraft by Radio Interferometry , 2007, Proceedings of the IEEE.

[27]  J.C. Camparo,et al.  A "space experiment" examining the response of a geosynchronous quartz crystal oscillator to various levels of solar activity , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[28]  Mihran Miranian,et al.  Developments in Ultra-Stable Quartz Oscillators for Deep Space Reliability , 2004 .

[29]  S. Moss,et al.  Space-system timekeeping in the presence of solar flares , 2004, IEEE Aerospace and Electronic Systems Magazine.

[30]  Marvin K. Simon,et al.  Autonomous Software-Defined Radio Receivers for Deep Space Applications , 2006 .

[31]  G. Leonard Tyler,et al.  Radio science observations with Mars Global Surveyor: Orbit insertion through one Mars year in mapping orbit , 2001 .

[32]  Lute Maleki,et al.  Recent Developments in Microwave Ion Clocks , 2001 .

[33]  M. Oestreich,et al.  Earth-Based Radio Tracking of the Galileo Probe for Jupiter Wind Estimation , 1997, Science.

[34]  R. Decher,et al.  Test of relativistic gravitation with a space-borne hydrogen maser , 1980 .

[35]  D. Plettemeier,et al.  The vertical profile of winds on Titan , 2005, Nature.

[36]  Robert L. Tjoelker,et al.  Sub-10-16 Frequency Stability in the JPL Multi-Pole Linear Ion Trap Standard , 2006 .

[37]  F. Emma,et al.  The onboard galileo rubidium and passive maser, status & performance , 2005, Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005..

[38]  G.L. Weaver,et al.  Examination of detailed frequency behavior of quartz resonators under low dose exposures to proton radiation , 2004, Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition, 2004..

[39]  Clifford M. Will,et al.  The Confrontation between General Relativity and Experiment , 2005, Living reviews in relativity.

[40]  Sheng Cheng,et al.  An advanced synthesized ultra-stable oscillator for spacecraft applications , 2005, 2005 IEEE Aerospace Conference.