The scattering of x rays from nonideal multilayer structures

A general theory is developed for the scattering of x rays from a single nonideal interface between two dielectric media. It is then extended to describe the scattering of x rays from a multilayer structure composed of many nonideal interfaces. The most unique feature of this theory is that there are no constraints on the physical structure of the interfaces; the interfaces can have any form of roughness or compositional inhomogeneity. A simple analytical expression is derived for both the near and far radiation field to first order, assuming that the scattering is weak. The theory is valid for arbitrary polarization and at all angles of incidence (measured from the normal) less than the critical angle for total external reflection. Finally, the results are applied to study the effect of different interface structures on the performance of multilayer x‐ray optics.

[1]  L. G. Parratt Surface Studies of Solids by Total Reflection of X-Rays , 1954 .

[2]  Alan E. Rosenbluth,et al.  Determination Of Thickness Errors And Boundary Roughness From The Measured Performance Of A Multilayer Coating , 1985, Optics & Photonics.

[3]  T. Barbee,et al.  Molybdenum-silicon multilayer mirrors for the extreme ultraviolet. , 1985, Applied optics.

[4]  E. Spiller,et al.  Reflective multilayer coatings for the far uv region. , 1976, Applied optics.

[5]  C. K. Carniglia,et al.  Scalar Scattering Theory for Multilayer Optical Coatings , 1979 .

[6]  J. Eastman,et al.  The microstructure of polished optical surfaces , 1974 .

[7]  P. Roche,et al.  Scattering from multilayer thin films: theory and experiment , 1981 .

[8]  W. Ehrenberg,et al.  X-ray optics; imperfections of optical flats and their effect on the reflection of X-rays. , 1949, Journal of the Optical Society of America.

[9]  M. Hong Metallic Multilayers and Epitaxy , 1987 .

[10]  J. O. Porteus Relation between the Height Distribution of a Rough Surface and the Reflectance at Normal Incidence , 1963 .

[11]  J. Elson,et al.  Infrared light scattering from surfaces covered with multiple dielectric overlayers. , 1977, Applied optics.

[12]  I. Ohlídal,et al.  Reflection of Light by a System of Nonabsorbing Isotropic Film–Nonabsorbing Isotropic Substrate with Randomly Rough Boundaries , 1971 .

[13]  J. Underwood,et al.  Soft X-ray imaging with a normal incidence mirror , 1981, Nature.

[14]  P. Beckmann,et al.  The scattering of electromagnetic waves from rough surfaces , 1963 .

[15]  D. K. Bowen,et al.  X-ray imaging II , 1986 .

[16]  Larry V. Knight,et al.  Image Quality Of Figured Multilayered Optics , 1985, Optics & Photonics.

[17]  T. W. Barbee,et al.  Layered synthetic microstructures: Measurements and applications , 1983 .

[18]  P Vincent,et al.  Metallic multilayers for x rays using classical thin-film theory. , 1984, Applied optics.

[19]  J. G. Hoffman,et al.  Physics of Thin Films: Advances in Research and Development , 1988 .

[20]  Martin C. Weisskopf,et al.  Imaging performance of a normal incidence soft x‐ray telescope , 1982 .

[21]  Ivan K. Schuller,et al.  Stability of multilayers for synchrotron optics , 1986 .

[22]  H. E. Bennett,et al.  Relation between Surface Roughness and Specular Reflectance at Normal Incidence , 1961 .

[23]  N. Ceglio,et al.  High‐resolution electron microscopy study of x‐ray multilayer structures , 1987 .

[24]  E. Spiller,et al.  Smooth multilayer films suitable for x‐ray mirrors , 1979 .

[25]  Riccardo Giacconi,et al.  Grazing-incidence telescopes for X-ray astronomy , 1969 .

[26]  J. Kortright,et al.  Tungsten-carbon multilayer system studied with x-ray scattering , 1987 .

[27]  Gene E. Ice,et al.  Design of doubly focusing, tunable (5 30 keV), wide bandpass optics made from layered synthetic microstructures , 1982 .

[28]  B. Zeldovich,et al.  X-ray and far uv multilayer mirrors: principles and possibilities. , 1977, Applied optics.

[29]  P. Croce,et al.  Light scattering investigation of the nature of polished glass surfaces , 1976 .

[30]  Eberhard Spiller,et al.  Experience With The In Situ Monitor System For The Fabrication Of X-Ray Mirrors , 1985, Optics & Photonics.

[31]  R. Haelbich,et al.  Multilayer interference mirrors for the XUV range around 100 eV photon energy , 1976 .

[32]  James H. Underwood,et al.  Layered Synthetic Microstructures: Properties And Applications In X-Ray Astronomy , 1979, Other Conferences.

[33]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[34]  D. Sayers,et al.  Glancing angle EXAFS studies of tungsten-carbon multilayers , 1987 .

[35]  L. Névot,et al.  Caractérisation des surfaces par réflexion rasante de rayons X. Application à l'étude du polissage de quelques verres silicates , 1980 .

[36]  I. Kozhevnikov,et al.  Basic Formulae of XUV Multilayer Optics , 1987 .

[37]  Ping Lee,et al.  X-ray diffraction in multilayers , 1981 .

[38]  A. Roger Generalized Reciprocity for Gratings of Finite Conductivity , 1983 .

[39]  Jr. Troy W. Barbee Multilayers for x-ray optics , 1986 .

[40]  T. J. Tanaka,et al.  Low-energy x-ray interaction coefficients: Photoabsorption, scattering, and reflection: E = 100–2000 eV Z = 1–94☆ , 1982 .

[41]  J. Underwood,et al.  Layered synthetic microstructures as Bragg diffractors for X rays and extreme ultraviolet: theory and predicted performance. , 1981, Applied optics.

[42]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[43]  E. Spiller,et al.  Controlled fabrication of multilayer soft‐x‐ray mirrors , 1980 .

[44]  Sirota,et al.  X-ray and neutron scattering from rough surfaces. , 1988, Physical review. B, Condensed matter.

[45]  J. McNeil,et al.  Surface smoothing effects of thin film deposition? , 1985, Applied optics.