Bayesian Level Sets for Image Segmentation

This paper presents a new general framework for image segmentation. A level set formulation is used to model the boundaries of the image regions and a new Multilabel Fast Marching is introduced for the evolution of the region contours toward the segmentation result. Statistical tests are performed to yield an initial estimate of high-confidence subsets of the image regions. Furthermore, the velocities for the propagation of the region contours are defined in accordance with the a posteriori probability of the respective regions, leading to the Bayesian Level Set methodology described in this paper. Typical segmentation problems are considered and experimental results are given to illustrate the robustness of the method against noise and its performance in precise region boundary localization.

[1]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[2]  Peter E. Hart,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[3]  Christopher M. Brown,et al.  The theory and practice of Bayesian image labeling , 1990, International Journal of Computer Vision.

[4]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[5]  G. B. Smith,et al.  Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .

[6]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[7]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Geoffrey J. McLachlan,et al.  Maximum likelihood clustering via normal mixture models , 1996, Signal Process. Image Commun..

[9]  Anthony J. Yezzi,et al.  A statistical approach to snakes for bimodal and trimodal imagery , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[10]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Thomas Sikora,et al.  The MPEG-4 video standard verification model , 1997, IEEE Trans. Circuits Syst. Video Technol..

[12]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[13]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[14]  Nikos Komodakis,et al.  Robust 3-D motion estimation and depth layering , 1997, Proceedings of 13th International Conference on Digital Signal Processing.

[15]  R. DeMori,et al.  Handbook of pattern recognition and image processing , 1986 .

[16]  Georgios Tziritas,et al.  Color and/or texture segmentation using deterministic relaxation and fast marching algorithms , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[17]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[18]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Josiane Zerubia,et al.  A Level Set Model for Image Classification , 1999, International Journal of Computer Vision.

[20]  Georgios Tziritas,et al.  Fast Marching to Moving Object Location , 1999, Scale-Space.

[21]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[22]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[23]  Michael Isard,et al.  Active Contours , 2000, Springer London.

[24]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  R. Deriche,et al.  Geodesic Active Regions for Texture Segmentation , 1998 .

[26]  T. Pavlidis Algorithms for Graphics and Image Processing , 1981, Springer Berlin Heidelberg.

[27]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[28]  James A. Sethian,et al.  Theory, algorithms, and applications of level set methods for propagating interfaces , 1996, Acta Numerica.

[29]  Tony F. Chan,et al.  An Active Contour Model without Edges , 1999, Scale-Space.

[30]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[31]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[32]  Theo Pavlidis,et al.  Algorithms for Graphics and Imag , 1983 .