Understanding the Solar Wind–Mars Interaction with Global Magnetohydrodynamic Modeling

This article presents recent progress in understanding solar wind–Mars interaction using a sophisticated global magnetohydrodynamic (MHD) model. Mars has localized crustal magnetic fields, so the solar wind plasma flow interacts directly with the Mars atmosphere/ionosphere system. Such an interaction generates an induced current in the ionosphere, modifies the magnetic field environment around Mars, and more importantly, causes the erosion of the Mars atmosphere. The nonuniformly distributed crustal magnetic field also plays an important role in the interaction process, which is modulated by planetary rotation. Recent advances in computing power allow the inclusion of the continuous crustal field rotation in the simulation with a time-dependent MHD model. Model results have been validated with observations from previous and ongoing Mars missions. The validated time-dependent MHD model is useful in quantifying the variation of ion loss rates with planet rotation and the internal response time scale of the Martian ionosphere.

[1]  Ness,et al.  Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission , 1998, Science.

[2]  Igor V. Sokolov,et al.  Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars , 2004 .

[3]  Dana Hurley Crider,et al.  The plasma Environment of Mars , 2004 .

[4]  Yoshifumi Futaana,et al.  A case study of proton precipitation at Mars: Mars Express observations and hybrid simulations , 2012 .

[5]  Matthew O. Fillingim,et al.  Three-dimensional structure of the Martian nightside ionosphere: Predicted rates of impact ionization from Mars Global Surveyor magnetometer and electron reflectometer measurements of precipitating electrons , 2011 .

[6]  F. Nimmo EARLY CRUSTAL EVOLUTION OF MARS 1 , 2005 .

[7]  Steven A Hauck,et al.  New Perspectives on Ancient Mars , 2005, Science.

[8]  R. M. Winglee,et al.  High-resolution multifluid simulations of the plasma environment near the Martian magnetic anomalies , 2007 .

[9]  Kenneth G. Powell,et al.  Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields , 2002 .

[10]  Robert M. Winglee,et al.  Three‐dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events , 2006 .

[11]  Pekka Janhunen,et al.  Oxygen ion escape at Mars in a hybrid model: High energy and low energy ions , 2010 .

[12]  Helmut Lammer,et al.  Non-thermal water loss of the early Mars: 3D multi-ion hybrid simulations , 2010 .

[13]  Erika Megan Harnett,et al.  High-resolution multifluid simulations of flux ropes in the Martian magnetosphere , 2009 .

[14]  Christopher T. Russell,et al.  Effects of crustal field rotation on the solar wind plasma interaction with Mars , 2014 .

[15]  Gábor Tóth,et al.  MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations , 2015 .

[16]  David L. Mitchell,et al.  The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile‐up boundary from the observations of the MAG/ER Experiment onboard Mars Global Surveyor , 2000 .

[17]  D. Curtis,et al.  MAVEN observations of the response of Mars to an interplanetary coronal mass ejection , 2015, Science.

[18]  Stephen H. Brecht,et al.  Control of ion loss from Mars during solar minimum , 2012, Earth, Planets and Space.

[19]  Andrew F. Nagy,et al.  Ion escape fluxes from Mars , 2007 .

[20]  Gábor Tóth,et al.  Three-dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars , 2011 .

[21]  Martin Pätzold,et al.  Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS) , 2012 .

[22]  Jafar Arkani-Hamed,et al.  A coherent model of the crustal magnetic field of Mars , 2004 .

[23]  Robert J. Lillis,et al.  Control of Mars global atmospheric loss by the continuous rotation of the crustal magnetic field: A time‐dependent MHD study , 2015 .

[24]  Christopher T. Russell,et al.  The solar wind interaction with Venus through the eyes of the Pioneer Venus Orbiter , 2006 .

[25]  E. Hauber,et al.  Outgassing History and Escape of the Martian Atmosphere and Water Inventory , 2015, 1506.06569.

[26]  David Andrew Brain,et al.  Mars Global Surveyor Measurements of the Martian Solar Wind Interaction , 2007 .