Monte Carlo and Quasi-Monte Carlo Methods

Chapter 12 discusses Monte Carlo and quasi-Monte Carlo methods and demonstrates how these techniques can be used to compute functionals of multidimensional diffusions. Monte Carlo methods feature prominently in this book, in particular we discuss how to use Lie Symmetry methods to construct unbiased Monte Carlo estimators in Chap. 6, and we discuss how to construct unbiased Monte Carlo estimators for Wishart processes in Chap. 11. In Chap. 12, we focus on two novel themes which have recently emerged in the context of Monte Carlo methods, namely the exact simulation of general stochastic differential equations and multilevel methods. In the second part of the chapter we discuss quasi-Monte Carlo methods. The focus of this part is on scrambled nets, and we show how they can produce faster convergence rates than standard Monte Carlo methods. The chapter concludes by illustrating how to apply quasi-Monte Carlo methods under the benchmark approach introduced in Chap. 1. We recall the Minimal Market Model from Chap. 3 and price financial derivatives on realized variance in this model.

[1]  M. Wand,et al.  Quasi-Monte Carlo for Highly Structured Generalised Response Models , 2008 .

[2]  Fred J. Hickernell,et al.  Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN , 2010, J. Complex..

[3]  Jan Baldeaux,et al.  Scrambled polynomial lattice rules for infinite-dimensional integration , 2010, 1010.6122.

[4]  Nan Chen,et al.  Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations , 2013, Math. Oper. Res..

[5]  Fred J. Hickernell,et al.  Deterministic multi-level algorithms for infinite-dimensional integration on RN , 2011, J. Complex..

[6]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[7]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[8]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[9]  Harald Niederreiter,et al.  Nets, (t, s)-Sequences, and Codes , 2008 .

[10]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[11]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[12]  Peter Jaeckel,et al.  Monte Carlo methods in finance , 2002 .

[13]  Peter W. Glynn,et al.  Discretization Error in Simulation of One-Dimensional Reflecting Brownian Motion , 1995 .

[14]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[15]  K. Ritter,et al.  Multi-Level {M}onte {C}arlo Algorithms for Infinite-Dimensional Integration on $\mathbb{R}^\mathbb{N}$ , 2010 .

[16]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[17]  P. Glynn,et al.  Efficient Monte Carlo Simulation of Security Prices , 1995 .

[18]  Stefan Heinrich,et al.  Monte Carlo Complexity of Global Solution of Integral Equations , 1998, J. Complex..

[19]  Ben Niu,et al.  Deterministic Multi-level Algorithms for Infinite-dimensional Integration on {$\mathbb{R}^{\mathbb{N}}$} , 2010 .

[20]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[21]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[22]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[23]  Michael Gnewuch,et al.  Lower Error Bounds for Randomized Multilevel and Changing Dimension Algorithms , 2012, ArXiv.

[24]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[25]  Eckhard Platen,et al.  Exact scenario simulation for selected multi-dimensional stochastic processes , 2009 .

[26]  G. Roberts,et al.  Monte Carlo Maximum Likelihood Estimation for Discretely Observed Diffusion Processes , 2009, 0903.0290.

[27]  Michael Gnewuch,et al.  Infinite-dimensional integration on weighted Hilbert spaces , 2012, Math. Comput..

[28]  David M. Williams Path Decomposition and Continuity of Local Time for One‐Dimensional Diffusions, I , 1974 .

[29]  G. Roberts,et al.  Exact simulation of diffusions , 2005, math/0602523.

[30]  Fred J. Hickernell,et al.  Algorithm 823: Implementing scrambled digital sequences , 2003, TOMS.

[31]  MatoušekJiří On the L2-discrepancy for anchored boxes , 1998 .

[32]  Nan Chen,et al.  Brownian meanders, importance sampling and unbiased simulation of diffusion extremes , 2012, Oper. Res. Lett..

[33]  Frances Y. Kuo,et al.  Remark on algorithm 659: Implementing Sobol's quasirandom sequence generator , 2003, TOMS.

[34]  M. Yor,et al.  Mathematical Methods for Financial Markets , 2009 .

[35]  Quasi-Monte Carlo methods for derivatives on realised variance of an index under the benchmark approach , 2011 .

[36]  Frances Y. Kuo,et al.  Constructing Sobol Sequences with Better Two-Dimensional Projections , 2008, SIAM J. Sci. Comput..

[37]  Michael Gnewuch,et al.  Optimal Randomized Multilevel Algorithms for Infinite-Dimensional Integration on Function Spaces with ANOVA-Type Decomposition , 2012, SIAM J. Numer. Anal..

[38]  Harald Niederreiter,et al.  Constructions of (t, m, s)-nets and (t, s)-sequences , 2005, Finite Fields Their Appl..

[39]  J. Imhof,et al.  Density factorizations for brownian motion, meander and the three-dimensional bessel process, and applications , 1984, Journal of Applied Probability.

[40]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[41]  G. Roberts,et al.  Retrospective exact simulation of diffusion sample paths with applications , 2006 .

[42]  A. Owen Monte Carlo Variance of Scrambled Net Quadrature , 1997 .

[43]  Alexandros Beskos,et al.  A Factorisation of Diffusion Measure and Finite Sample Path Constructions , 2008 .

[44]  Jirí Matousek,et al.  On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..

[45]  J. Hammersley MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .

[46]  Stefan Heinrich,et al.  Monte Carlo Complexity of Parametric Integration , 1999, J. Complex..

[47]  Gottlieb Pirsic,et al.  A Software Implementation of Niederreiter-Xing Sequences , 2002 .

[48]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .