Monte Carlo and Quasi-Monte Carlo Methods
暂无分享,去创建一个
[1] M. Wand,et al. Quasi-Monte Carlo for Highly Structured Generalised Response Models , 2008 .
[2] Fred J. Hickernell,et al. Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN , 2010, J. Complex..
[3] Jan Baldeaux,et al. Scrambled polynomial lattice rules for infinite-dimensional integration , 2010, 1010.6122.
[4] Nan Chen,et al. Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations , 2013, Math. Oper. Res..
[5] Fred J. Hickernell,et al. Deterministic multi-level algorithms for infinite-dimensional integration on RN , 2011, J. Complex..
[6] Joseph F. Traub,et al. Faster Valuation of Financial Derivatives , 1995 .
[7] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[8] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[9] Harald Niederreiter,et al. Nets, (t, s)-Sequences, and Codes , 2008 .
[10] Paul Glasserman,et al. Monte Carlo Methods in Financial Engineering , 2003 .
[11] Hans-Joachim Bungartz,et al. Acta Numerica 2004: Sparse grids , 2004 .
[12] Peter Jaeckel,et al. Monte Carlo methods in finance , 2002 .
[13] Peter W. Glynn,et al. Discretization Error in Simulation of One-Dimensional Reflecting Brownian Motion , 1995 .
[14] P. Kloeden,et al. Numerical Solution of Stochastic Differential Equations , 1992 .
[15] K. Ritter,et al. Multi-Level {M}onte {C}arlo Algorithms for Infinite-Dimensional Integration on $\mathbb{R}^\mathbb{N}$ , 2010 .
[16] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[17] P. Glynn,et al. Efficient Monte Carlo Simulation of Security Prices , 1995 .
[18] Stefan Heinrich,et al. Monte Carlo Complexity of Global Solution of Integral Equations , 1998, J. Complex..
[19] Ben Niu,et al. Deterministic Multi-level Algorithms for Infinite-dimensional Integration on {$\mathbb{R}^{\mathbb{N}}$} , 2010 .
[20] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[21] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[22] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[23] Michael Gnewuch,et al. Lower Error Bounds for Randomized Multilevel and Changing Dimension Algorithms , 2012, ArXiv.
[24] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[25] Eckhard Platen,et al. Exact scenario simulation for selected multi-dimensional stochastic processes , 2009 .
[26] G. Roberts,et al. Monte Carlo Maximum Likelihood Estimation for Discretely Observed Diffusion Processes , 2009, 0903.0290.
[27] Michael Gnewuch,et al. Infinite-dimensional integration on weighted Hilbert spaces , 2012, Math. Comput..
[28] David M. Williams. Path Decomposition and Continuity of Local Time for One‐Dimensional Diffusions, I , 1974 .
[29] G. Roberts,et al. Exact simulation of diffusions , 2005, math/0602523.
[30] Fred J. Hickernell,et al. Algorithm 823: Implementing scrambled digital sequences , 2003, TOMS.
[31] MatoušekJiří. On the L2-discrepancy for anchored boxes , 1998 .
[32] Nan Chen,et al. Brownian meanders, importance sampling and unbiased simulation of diffusion extremes , 2012, Oper. Res. Lett..
[33] Frances Y. Kuo,et al. Remark on algorithm 659: Implementing Sobol's quasirandom sequence generator , 2003, TOMS.
[34] M. Yor,et al. Mathematical Methods for Financial Markets , 2009 .
[35] Quasi-Monte Carlo methods for derivatives on realised variance of an index under the benchmark approach , 2011 .
[36] Frances Y. Kuo,et al. Constructing Sobol Sequences with Better Two-Dimensional Projections , 2008, SIAM J. Sci. Comput..
[37] Michael Gnewuch,et al. Optimal Randomized Multilevel Algorithms for Infinite-Dimensional Integration on Function Spaces with ANOVA-Type Decomposition , 2012, SIAM J. Numer. Anal..
[38] Harald Niederreiter,et al. Constructions of (t, m, s)-nets and (t, s)-sequences , 2005, Finite Fields Their Appl..
[39] J. Imhof,et al. Density factorizations for brownian motion, meander and the three-dimensional bessel process, and applications , 1984, Journal of Applied Probability.
[40] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[41] G. Roberts,et al. Retrospective exact simulation of diffusion sample paths with applications , 2006 .
[42] A. Owen. Monte Carlo Variance of Scrambled Net Quadrature , 1997 .
[43] Alexandros Beskos,et al. A Factorisation of Diffusion Measure and Finite Sample Path Constructions , 2008 .
[44] Jirí Matousek,et al. On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..
[45] J. Hammersley. MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .
[46] Stefan Heinrich,et al. Monte Carlo Complexity of Parametric Integration , 1999, J. Complex..
[47] Gottlieb Pirsic,et al. A Software Implementation of Niederreiter-Xing Sequences , 2002 .
[48] M. Giles. Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .