Synthesis of periodic mesoporous organosilicas with chemically active bridging groups and high loadings of thiol groups

Chemically active isocyanurate-bridged periodic mesoporous organosilica materials with high loadings of pendant thiol groups have been synthesized via co-condensation under acidic conditions, using the triblock copolymer EO20PO70EO20 (P123) as template and a mixture of mercaptopropyl-containing silane and isocyanurate-containing silsesquioxane to form the framework. The obtained SH–ICS–PMOs were characterized by XRD, transmission electron microscopy (TEM), solid state 13C and 29Si MAS NMR spectroscopy, and N2 physical sorption. The data show that well-ordered SH–ICS–PMOs were obtained with 40% of the framework Si atoms bearing the thiol pendant groups. Interestingly, the introduction of the thiol groups improved the mesostructural ordering and favored the cross-linking of the pore walls. The determination of Hg2+ uptake from aqueous solution as a test case showed that both the bridging ICS groups and the pendant thiol groups in the SH–ICS–PMOs are active in adsorbing Hg2+. Our study demonstrated that well-ordered periodic mesoporous organosilicas are capable of supporting both chemically active bridging groups and active pendant groups with high loadings.

[1]  Ferdi Schüth,et al.  Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials , 2009 .

[2]  R. Fischer,et al.  Synthesis, Bifunctionalization, and Application of Isocyanurate-Based Periodic Mesoporous Organosilicas , 2007 .

[3]  D. Zhao,et al.  Synthesis of Ordered Cubic Periodic Mesoporous Organosilicas with Ultra-Large Pores , 2007 .

[4]  Mark E. Davis,et al.  Multifunctional heterogeneous catalysts: SBA-15-containing primary amines and sulfonic acids. , 2006, Angewandte Chemie.

[5]  M. Fröba,et al.  Synthesis and characterization of highly ordered bifunctional aromatic periodic mesoporous organosilicas with different pore sizes , 2006 .

[6]  Yong‐Lai Zhang,et al.  Mesoporous silica materials with an extremely high content of organic sulfonic groups and their comparable activities with that of concentrated sulfuric acid in catalytic esterification. , 2006, The journal of physical chemistry. B.

[7]  C. Ha,et al.  Functionalized periodic mesoporous organosilica fibers with longitudinal pore architectures under basic conditions , 2006 .

[8]  J. Alauzun,et al.  Mesoporous materials with an acidic framework and basic pores. A successful cohabitation. , 2006, Journal of the American Chemical Society.

[9]  M. Fröba,et al.  Silica-based mesoporous organic-inorganic hybrid materials. , 2006, Angewandte Chemie.

[10]  M. Jaroniec,et al.  Periodic Mesoporous Organosilicas with Ethane and Large Isocyanurate Bridging Groups , 2006 .

[11]  R. Mokaya,et al.  Molecularly Ordered Ethylene-Bridged Periodic Mesoporous Organosilica Spheres with Tunable Micrometer Sizes , 2006 .

[12]  M. Jaroniec,et al.  Periodic mesoporous organosilicas with Im3m symmetry and large isocyanurate bridging groups. , 2006, The journal of physical chemistry. B.

[13]  Xu Li,et al.  Synthesis of large-pore methylene-bridged periodic mesoporous organosilicas and its implications. , 2006, The journal of physical chemistry. B.

[14]  Wen-Hau Zhang,et al.  Large Pore Methylene-Bridged Periodic Mesoporous Organosilicas: Synthesis, Bifunctionalization and Their Use as Nanotemplates , 2005 .

[15]  G. Lu,et al.  Synthesis and Bio-adsorptive Properties of Large-Pore Periodic Mesoporous Organosilica Rods , 2005 .

[16]  Geoffrey A. Ozin,et al.  Challenges and advances in the chemistry of periodic mesoporous organosilicas (PMOs) , 2005 .

[17]  Wen-Hau Zhang,et al.  Highly ordered periodic mesoporous ethanesilica synthesized under neutral conditions , 2005 .

[18]  E. Hagaman,et al.  Synthesis and characterization of periodic mesoporous organosilicas as anion exchange resins for perrhenate adsorption. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[19]  Jian Liu,et al.  Synthesis and Characterization of Phosphonic Acid Functionalized Organosilicas with Bimodal Nanostructure , 2005 .

[20]  M. Jaroniec,et al.  Bifunctional periodic mesoporous organosilica with large heterocyclic bridging groups and mercaptopropyl ligands , 2005 .

[21]  C. Ha,et al.  Periodic Mesoporous Organosilica Materials Incorporating Various Organic Functional Groups: Synthesis, Structural Characterization, and Morphology , 2005 .

[22]  V. S. Lin,et al.  Cooperative catalysis by general acid and base bifunctionalized mesoporous silica nanospheres. , 2005, Angewandte Chemie.

[23]  M. Fröba,et al.  Synthesis and characterization of highly ordered thiophene-bridged periodic mesoporous organosilicas with large pores , 2005 .

[24]  B. Hatton,et al.  Past, Present, and Future of Periodic Mesoporous OrganosilicasThe PMOs , 2005 .

[25]  Jian Liu,et al.  Acid catalyzed synthesis of ordered bifunctionalized mesoporous organosilicas with large pore , 2005 .

[26]  Wenxin Wang,et al.  Bifunctional hybrid mesoporous organoaluminosilicates with molecularly ordered ethylene groups. , 2005, Journal of the American Chemical Society.

[27]  R. Anwander,et al.  PMO[KIT-5]-n: synthesis of highly ordered three-dimensional periodic mesoporous organosilicas with Fm3m symmetry. , 2005, Chemical communications.

[28]  M. Jaroniec,et al.  Periodic mesoporous organosilica with large heterocyclic bridging groups. , 2005, Journal of the American Chemical Society.

[29]  G. Ozin,et al.  Periodic Mesoporous Dendrisilicas , 2004, Science.

[30]  G. Kickelbick Hybrid inorganic-organic mesoporous materials. , 2004, Angewandte Chemie.

[31]  J. Holmes,et al.  Synthesis and Characterization of Bifunctionalized Ordered Mesoporous Materials , 2004 .

[32]  C. Sanchez,et al.  New P^O ligand grafted on periodically organised mesoporous silicas for one-pot bifunctionnal catalysis: Coupling of base catalysed Knoevenagel condensation with in situ Rh catalysed hydrogenationElectronic supplementary information (ESI) available: NMR spectra, TEM micrographs, N2 adsorption/desorp , 2004 .

[33]  C. Ha,et al.  Hybrid periodic mesoporous organosilica materials prepared from 1,2-bis(triethoxysilyl)ethane and (3-cyanopropyl)triethoxysilane , 2004 .

[34]  Jun Li,et al.  A novel route toward the synthesis of high-quality large-pore periodic mesoporous organosilicas , 2004 .

[35]  Taewook Kang,et al.  Highly Selective Adsorption of Pt2+ and Pd2+ Using Thiol-Functionalized Mesoporous Silica , 2004 .

[36]  Kai Landskron,et al.  Periodic Mesoporous Organosilicas Containing Interconnected [Si(CH2)]3 Rings , 2003, Science.

[37]  Seong Huh,et al.  Organic Functionalization and Morphology Control of Mesoporous Silicas via a Co-Condensation Synthesis Method , 2003 .

[38]  K. Domen,et al.  Synthesis of Highly Ordered Hybrid Mesoporous Material Containing Etenylene (–CH=CH–) within the Silicate Framework , 2003 .

[39]  F. Schüth,et al.  Consecutive generation of mesopores and micropores in SBA-15 , 2003 .

[40]  F. Schüth,et al.  A novel synthetic route for negatively charged ordered mesoporous silica SBA-15 , 2003 .

[41]  Jiyong Park,et al.  Triblock Copolymer Synthesis of Highly Ordered Large-Pore Periodic Mesoporous Organosilicas with the Aid of Inorganic Salts , 2003 .

[42]  S. Kaliaguine,et al.  Sulfonic acid-functionalized periodic mesoporous organosilica , 2003 .

[43]  S. Inagaki,et al.  Self-assembly of biphenylene-bridged hybrid mesoporous solid with molecular-scale periodicity in the pore walls. , 2002, Journal of the American Chemical Society.

[44]  S. Inagaki,et al.  Synthesis of large-pore phenylene-bridged mesoporous organosilica using triblock copolymer surfactant. , 2002, Chemical communications.

[45]  Shinji Inagaki,et al.  Sulfuric acid-functionalized mesoporous benzene-silica with a molecular-scale periodicity in the walls. , 2002, Journal of the American Chemical Society.

[46]  M. Jaroniec,et al.  Metamorphosis of ordered mesopores to micropores: periodic silica with unprecedented loading of pendant reactive organic groups transforms to periodic microporous silica with tailorable pore size. , 2002, Journal of the American Chemical Society.

[47]  M. Jaroniec,et al.  Periodic mesoporous organosilica with large cagelike pores , 2002 .

[48]  M. Jaroniec,et al.  Evidence for general nature of pore interconnectivity in 2-dimensional hexagonal mesoporous silicas prepared using block copolymer templates , 2002 .

[49]  T. Ohsuna,et al.  An ordered mesoporous organosilica hybrid material with a crystal-like wall structure , 2002, Nature.

[50]  B. Gaber,et al.  Amine-Functionalized Periodic Mesoporous Organosilicas , 2001 .

[51]  B. Gaber,et al.  Direct Synthesis of Periodic Mesoporous Organosilicas: Functional Incorporation by Co-condensation with Organosilanes , 2001 .

[52]  M. Jaroniec,et al.  Novel bifunctional periodic mesoporous organosilicas, BPMOs: synthesis, characterization, properties and in-situ selective hydroboration-alcoholysis reactions of functional groups. , 2001, Journal of the American Chemical Society.

[53]  Yen Wei,et al.  Controlled Synthesis of CdS Nanoparticles inside Ordered Mesoporous Silica Using Ion-Exchange Reaction , 2001 .

[54]  T. Pinnavaia,et al.  Optimizing Organic Functionality in Mesostructured Silica: Direct Assembly of Mercaptopropyl Groups in Wormhole Framework Structures , 2001 .

[55]  P. R. Rajamohanan,et al.  Solid state NMR of a molecular self-assembly: multinuclear approach to the cyanuric acid-melamine system. , 2001, Organic letters.

[56]  M. Jaroniec,et al.  Gas adsorption characterization of ordered organic-inorganic nanocomposite materials , 2001 .

[57]  N. Sugimoto,et al.  Novel templating synthesis of necklace-shaped mono- and bimetallic nanowires in hybrid organic-inorganic mesoporous material. , 2001, Journal of the American Chemical Society.

[58]  Mietek Jaroniec,et al.  Block-Copolymer-Templated Ordered Mesoporous Silica: Array of Uniform Mesopores or Mesopore−Micropore Network? , 2000 .

[59]  Brian J. Melde,et al.  Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age , 2000 .

[60]  Bradley F. Chmelka,et al.  Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups , 2000 .

[61]  G. Ozin,et al.  Metamorphic Channels in Periodic Mesoporous Methylenesilica , 2000 .

[62]  G. Ozin,et al.  Periodic mesoporous organosilicas with organic groups inside the channel walls , 1999, Nature.

[63]  B. J. Melde,et al.  Mesoporous sieves with unified hybrid inorganic/organic frameworks , 1999 .

[64]  T. Ohsuna,et al.  Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks , 1999 .

[65]  A. Stein,et al.  Synthesis of Ordered Microporous Silicates with Organosulfur Surface Groups and Their Applications as Solid Acid Catalysts , 1998 .

[66]  T. Pinnavaia,et al.  Access in mesoporous materials: Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation , 1997 .

[67]  C. Airoldi,et al.  Diamine Immobilization on Silica Gel through the Sol−Gel Process and Increase in the Organic Chain by Using Glutaraldehyde followed by Ethylenediamine , 1997 .

[68]  Kenneth M. Kemner,et al.  Functionalized Monolayers on Ordered Mesoporous Supports , 1997 .

[69]  R. Ryoo,et al.  Synthesis of platinum networks with nanoscopic periodicity using mesoporous silica as template , 2001 .

[70]  D. Zhao,et al.  A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions , 2000 .

[71]  T. Pinnavaia,et al.  Selective adsorption of Hg2+ by thiol-functionalized nanoporous silica , 1999 .

[72]  D. Vos,et al.  Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions , 1998 .

[73]  S. Mann,et al.  Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors , 1996 .