Effective rigid analytic trivializations for Drinfeld modules

We develop tools for constructing rigid analytic trivializations for Drinfeld modules as infinite products of Frobenius twists of matrices, from which we recover the rigid analytic trivialization given by Pellarin in terms of Anderson generating functions. One advantage is that these infinite products can be obtained from only a finite amount of initial calculation, and consequently we obtain new formulas for periods and quasiperiods, similar to the product expansion of the Carlitz period. We further link to results of Gekeler and Maurischat on the ∞-adic field generated by the period lattice.

[1]  A. Robert,et al.  A Course in p-adic Analysis , 2000 .

[2]  E. Gekeler On the de Rham isomorphism for Drinfeld modules. , 1989 .

[3]  M. Papanikolas,et al.  Identities for Anderson generating functions for Drinfeld modules , 2013, 1302.0238.

[4]  A. Maurischat,et al.  Special functions and Gauss–Thakur sums in higher rank and dimension , 2019, Journal für die reine und angewandte Mathematik (Crelles Journal).

[5]  D. Thakur Shtukas and Jacobi sums , 1993 .

[6]  E. Gekeler On the field generated by the periods of a Drinfeld module , 2019, Archiv der Mathematik.

[7]  M. Papanikolas,et al.  The de Rham isomorphism for Drinfeld modules over Tate algebras , 2018, Journal of Algebra.

[8]  A. Maurischat On field extensions given by periods of Drinfeld modules , 2019, Archiv der Mathematik.

[9]  M. Papanikolas ALGEBRAIC INDEPENDENCE OF PERIODS AND LOGARITHMS OF DRINFELD MODULES CHIEH-YU CHANG AND MATTHEW A. PAPANIKOLAS, WITH AN APPENDIX BY BRIAN CONRAD , 2011 .

[10]  Matthew A. Papanikolas,et al.  Hyperderivatives of periods and quasi-periods for Anderson $t$-modules , 2021, 2103.05836.

[11]  Leonard Carlitz,et al.  On certain functions connected with polynomials in a Galois field , 1935 .

[12]  Nathan Green Tensor powers of rank 1 Drinfeld modules and periods , 2017, Journal of Number Theory.

[13]  Nathan Green,et al.  Special L-values and shtuka functions for Drinfeld modules on elliptic curves , 2016, 1607.04211.

[14]  David Goss,et al.  Basic Structures of Function Field Arithmetic , 1997 .

[15]  M. Papanikolas,et al.  Explicit formulas for Drinfeld modules and their periods , 2011, 1112.5378.

[16]  G. Anderson,et al.  Tensor powers of the Carlitz module and zeta values , 1990 .

[17]  W. Brownawell,et al.  Determination of the algebraic relations among special Γ-values in positive characteristic , 2002, math/0207168.

[18]  Dinesh S. Thakur,et al.  Function Field Arithmetic , 2004 .

[19]  F. Pellarin Values of certain L-series in positive characteristic , 2011, 1107.4511.

[20]  Chieh-Yu Chang,et al.  Algebraic independence of periods and logarithms of Drinfeld modules (with an appendix by Brian Conrad) , 2010, 1005.5120.

[21]  Chieh-Yu Chang,et al.  Algebraic relations among periods and logarithms of rank 2 Drinfeld modules , 2008, 0807.3157.

[22]  S. K. Sinha Periods of $t$-motives and transcendence , 1997 .

[23]  U. Hartl,et al.  Pink’s theory of Hodge structures and the Hodge conjecture over function fields , 2016, $t$-Motives: Hodge Structures, Transcendence and Other Motivic Aspects.