Human colorectal cancer initiation is bidirectional, and cell growth, metabolic genes and transporter genes are early drivers of tumorigenesis.

[1]  F. Greten,et al.  Cell plasticity in epithelial homeostasis and tumorigenesis , 2017, Nature Cell Biology.

[2]  Y. Kondo,et al.  Activation of the Hypoxia Inducible Factor 1α Subunit Pathway in Steatotic Liver Contributes to Formation of Cholesterol Gallstones. , 2017, Gastroenterology.

[3]  B. Vogelstein,et al.  Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention , 2017, Science.

[4]  H. Fan,et al.  Risk analysis of colorectal cancer incidence by gene expression analysis , 2017, PeerJ.

[5]  A. Newton,et al.  PHLPPing through history: a decade in the life of PHLPP phosphatases. , 2016, Biochemical Society transactions.

[6]  R. Weinberg,et al.  EMT, cell plasticity and metastasis , 2016, Cancer and Metastasis Reviews.

[7]  R. Young,et al.  Identification of a cancer stem cell-specific function for the histone deacetylases, HDAC1 and HDAC7, in breast and ovarian cancer , 2016, Oncogene.

[8]  A. Fich,et al.  The cancer cells-of-origin in the gastrointestinal tract: progenitors revisited. , 2015, Carcinogenesis.

[9]  F. Watt,et al.  Stem cell heterogeneity and plasticity in epithelia. , 2015, Cell stem cell.

[10]  Liang Hu,et al.  Prognostic value of carbonic anhydrase VII expression in colorectal carcinoma , 2015, BMC Cancer.

[11]  Hans Clevers,et al.  Plasticity within stem cell hierarchies in mammalian epithelia. , 2015, Trends in cell biology.

[12]  H. Baba,et al.  Clinical impact of the Warburg effect in gastrointestinal cancer (review). , 2014, International journal of oncology.

[13]  J. Stender,et al.  Pleckstrin homology domain leucine-rich repeat protein phosphatases set the amplitude of receptor tyrosine kinase output , 2014, Proceedings of the National Academy of Sciences.

[14]  A. Newton,et al.  Biochemical Characterization of the Phosphatase Domain of the Tumor Suppressor PH Domain Leucine-Rich Repeat Protein Phosphatase , 2014, Biochemistry.

[15]  Thomas Wetter,et al.  Gene Expression Profiling of Colorectal Tumors and Normal Mucosa by Microarrays Meta-Analysis Using Prediction Analysis of Microarray, Artificial Neural Network, Classification, and Regression Trees , 2014, Disease markers.

[16]  M. Georgescu,et al.  PHLPP2 suppresses the NF-κB pathway by inactivating IKKβ kinase , 2014, Oncotarget.

[17]  R. Sitia,et al.  Tyrosine kinase signal modulation: a matter of H2O2 membrane permeability? , 2013, Antioxidants & redox signaling.

[18]  A. S. Verkman,et al.  Aquaporins , 2013, Current Biology.

[19]  H. Clevers,et al.  Intestinal Tumorigenesis Initiated by Dedifferentiation and Acquisition of Stem-Cell-like Properties , 2013, Cell.

[20]  A. Newton,et al.  Common Polymorphism in the Phosphatase PHLPP2 Results in Reduced Regulation of Akt and Protein Kinase C* , 2009, Journal of Biological Chemistry.

[21]  K. Rowan Are cancer stem cells real? After four decades, debate still simmers. , 2009, Journal of the National Cancer Institute.

[22]  Hans Clevers,et al.  Crypt stem cells as the cells-of-origin of intestinal cancer , 2009, Nature.

[23]  S. Morrison,et al.  Efficient tumor formation by single human melanoma cells , 2008, Nature.

[24]  Claudiu T. Supuran,et al.  Carbonic anhydrases: novel therapeutic applications for inhibitors and activators , 2008, Nature Reviews Drug Discovery.

[25]  H. Clevers,et al.  Identification of stem cells in small intestine and colon by marker gene Lgr5 , 2007, Nature.

[26]  Suet Yi Leung,et al.  Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors , 2007, Proceedings of the National Academy of Sciences.

[27]  Aleksandar Dakic,et al.  Tumor Growth Need Not Be Driven by Rare Cancer Stem Cells , 2007, Science.

[28]  P. Kiberstis Looking for Cancer Stem Cells , 2007, Science.

[29]  K. Ho,et al.  A Susceptibility Gene Set for Early Onset Colorectal Cancer That Integrates Diverse Signaling Pathways: Implication for Tumorigenesis , 2007, Clinical Cancer Research.

[30]  W. Bodmer Cancer genetics: colorectal cancer as a model , 2006, Journal of Human Genetics.

[31]  M. Clarke,et al.  Stem Cells and Cancer: Two Faces of Eve , 2006, Cell.

[32]  W. Hahn,et al.  Roots and stems: stem cells in cancer , 2006, Nature Medicine.

[33]  Max S Wicha,et al.  Cancer stem cells: an old idea--a paradigm shift. , 2006, Cancer research.

[34]  W. Bodmer,et al.  Bottom-up histogenesis of colorectal adenomas: origin in the monocryptal adenoma and initial expansion by crypt fission. , 2003, Cancer research.

[35]  Hans Clevers,et al.  The β-Catenin/TCF-4 Complex Imposes a Crypt Progenitor Phenotype on Colorectal Cancer Cells , 2002, Cell.

[36]  K. Kinzler,et al.  Top-down morphogenesis of colorectal tumors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Carlos Rubio,et al.  Differential expression of Aquaporin 8 in human colonic epithelial cells and colorectal tumors , 2001, BMC Physiology.

[38]  P. Cheah,et al.  Update of genetics in colorectal carcinomas: genomic instability and somatic evolution. , 2000, Annals of the Academy of Medicine, Singapore.

[39]  W. Bodmer,et al.  Genetic pathways in colorectal and other cancers. , 1999, European journal of cancer.

[40]  R. Weinberg,et al.  How does multistep tumorigenesis really proceed? , 2015, Cancer discovery.