A DC programming heuristic applied to the logistics network design problem

This paper proposes a new heuristic method for the logistics network design and planning problem based on linear relaxation and DC (difference of convex functions) programming. We consider a multi-period, multi-echelon, multi-commodity and multi-product problem defined as a large scale mixed integer linear programming (MILP) model. The method is experimented on data sets of various size. The numerical results validate the efficiency of the heuristic for instances with up to several dozens facilities, 18 products and 270 retailers.

[1]  Francisco Saldanha-da-Gama,et al.  Dynamic multi-commodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning , 2006, Comput. Oper. Res..

[2]  J. Toland Duality in nonconvex optimization , 1978 .

[3]  Maria João Cortinhal,et al.  Upper and lower bounds for the single source capacitated location problem , 2003, Eur. J. Oper. Res..

[4]  Jean-François Cordeau,et al.  An integrated model for logistics network design , 2006, Ann. Oper. Res..

[5]  Le Thi Hoai An,et al.  A continuous DC programming approach to the strategic supply chain design problem from qualified partner set , 2007, Eur. J. Oper. Res..

[6]  Nathalie Bostel,et al.  A linear relaxation-based heuristic approach for logistics network design , 2010, Comput. Ind. Eng..

[7]  Le Thi Hoai An,et al.  The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems , 2005, Ann. Oper. Res..

[8]  Matteo Fischetti,et al.  A feasibility pump heuristic for general mixed-integer problems , 2007, Discret. Optim..

[9]  Haldun Süral,et al.  A review of hierarchical facility location models , 2007, Comput. Oper. Res..

[10]  Phuong Nga Thanh Conception et planification stratégique des réseaux logistiques complexes , 2008 .

[11]  B. Beamon Supply chain design and analysis:: Models and methods , 1998 .

[12]  Mark S. Daskin,et al.  Strategic facility location: A review , 1998, Eur. J. Oper. Res..

[13]  Nathalie Bostel,et al.  A dynamic model for facility location in the design of complex supply chains , 2008 .

[14]  Tao Pham Dinh,et al.  Exact penalty in d.c. programming , 1999 .

[15]  Hokey Min,et al.  The dynamic relocation and phase-out of a hybrid, two-echelon plant/warehousing facility: A multiple objective approach , 2000, Eur. J. Oper. Res..

[16]  Zvi Drezner,et al.  Constructing a DC decomposition for ordered median problems , 2009, J. Glob. Optim..

[17]  John M. Wilson,et al.  An LP-based heuristic procedure for the generalized assignment problem with special ordered sets , 2007, Comput. Oper. Res..

[18]  Nathalie Bostel,et al.  A linear relaxation-based heuristic for logistics network design , 2008 .

[19]  Francisco Saldanha-da-Gama,et al.  Facility location and supply chain management - A review , 2009, Eur. J. Oper. Res..

[20]  Timo Berthold,et al.  Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Improving the Feasibility Pump Improving the Feasibility Pump , 2022 .

[21]  Le Thi Hoai An,et al.  A continuous approach for the concave cost supply problem via DC programming and DCA , 2008, Discret. Appl. Math..

[22]  Fred W. Glover,et al.  The feasibility pump , 2005, Math. Program..

[23]  Lawrence V. Snyder,et al.  Facility Location in Supply Chain Design , 2005 .

[24]  Martin W. P. Savelsbergh,et al.  Analysis of bounds for a capacitated single-item lot-sizing problem , 2007, Comput. Oper. Res..

[25]  J. F. Benders,et al.  A property of assignment type mixed integer linear programming problems , 1982 .

[26]  Mark S. Daskin,et al.  Capacitated facility location/network design problems , 2001, Eur. J. Oper. Res..

[27]  Chaitanya Swamy,et al.  LP-based approximation algorithms for capacitated facility location , 2004, Math. Program..