Structural and spectroscopic trends in a series of half-sandwich scorpionate complexes.

Fifteen half-sandwich scorpionate complexes [(L)M(NCMe)(3)](BF(4))(n) (L = tris(3,5-dimethylpyrazol-1-yl)methane, Tpm(Me,Me), n = 2, 1(M), M = Mn, Fe, Co, Ni; L = tris(3-phenylpyrazol-1-yl)methane, Tpm(Ph), n = 2, 2(M), M = Mn, Fe, Co, Ni; L = hydrotris(3,5-dimethylpyrazol-1-yl)borate, [Tp(Me,Me)](-), n = 1, 3(M), M = Fe, Co, Ni; L = hydrotris(3-phenyl-5-methylpyrazol-1-yl)borate, [Tp(Ph,Me)](-), n = 1, 4(M), M = Mn, Fe, Co, Ni) were prepared by addition of the tripodal ligands to solvated [M(NCMe)(x)](2+) (M = Mn, x = 4; M = Fe, Co, Ni, x = 6) precursor complexes. The product complexes were characterized by (1)H NMR (except M = Mn), UV-vis-NIR, and FTIR spectroscopy. The structures of 2(Mn), 2(Ni), 3(Fe), 3(Co), and 4(Fe) were determined by X-ray crystallography. The data were consistent with complexes of high-spin divalent metal ions in idealized piano-stool geometries in all cases. Consequent lability of the acetonitrile ligands will enable use of these complexes as synthetic precursors and as catalysts. Comparison to previously reported structures of 1(Fe), 1(Co), 2(Fe), and 2(Co), the triflate salt analogues of 4(Co) and 4(Ni), as well as related sandwich complexes (e.g., [(Tp(Me,Me))(2)M]) and solvated metal dications [M(NCMe)(6)](2+) reveals numerous trends in M-N bond lengths. Primary among these are the Irving-Williams series, with significant structural effects also arising from ligand charge and sterics. Systematic trends in spectroscopic data were also observed which further elucidate these issues.

[1]  M. Jensen,et al.  Oxidative assembly of octahedral nickel(II)-tris(3,5-dimethylpyrazol-1-yl)methane (Tpm∗) complexes by reaction of Ni(COD)2 (COD = 1,5-cyclooctadiene) with putative oxene and nitrene precursors , 2013 .

[2]  M. Jensen,et al.  Half-Sandwich Scorpionates as Nitrene Transfer Catalysts , 2012 .

[3]  M. Jensen,et al.  Aerobic and hydrolytic decomposition of pseudotetrahedral nickel phenolate complexes. , 2012, Inorganic chemistry.

[4]  L. A. Sheludyakova,et al.  Spin-crossover in the complex of iron(II) nitrate with tris(3,5-dimethylpyrazol-1-yl)methane , 2012 .

[5]  Samuel M. Greer,et al.  Crowded bis ligand complexes of Ttz(Ph,Me) with first row transition metals rearrange due to ligand field effects: structural and electronic characterization (Ttz(Ph,Me) = tris(3-phenyl-5-methyl-1,2,4-triazolyl)borate). , 2012, Dalton transactions.

[6]  L. Lezama,et al.  Networks based on hydrogen-bonds containing phosphorus anions and tris(3,5-dimethylpyrazolyl)borate nickel(II) moieties , 2012 .

[7]  J. Nakazawa,et al.  Dioxygen activation and substrate oxygenation by a p-nitrothiophenolatonickel complex: unique effects of an acetonitrile solvent and the p-nitro group of the ligand. , 2011, Inorganic chemistry.

[8]  J. Elguero,et al.  Structural Characterization of Paramagnetic Octahedral Homoscor‐Pionate (Polypyrazolylborate) Cobalt Complexes by 1H and 13C NMR Spectroscopy and by FAB‐Mass Spectrometry , 2010 .

[9]  D. Pogocki,et al.  Analysis of NMR shifts of high-spin cobalt(II) pyrazolylborate complexes , 2009 .

[10]  K. J. Brown,et al.  Structural Correlations in High-Spin Complexes of [Fe{HC(3,5-Me2pz)3}2]2+: Solid State Structure of [Fe{HC(3,5-Me2pz)3}2][Fe2OCl6] , 2009 .

[11]  P. Pérez,et al.  Nitrene transfer reactions catalysed by copper(I) complexes in ionic liquid using chloramine-T. , 2009, Dalton transactions.

[12]  L. Martins,et al.  Cu(I) complexes bearing the new sterically demanding and coordination flexible tris(3-phenyl-1-pyrazolyl)methanesulfonate ligand and the water-soluble phosphine 1,3,5-triaza-7-phosphaadamantane or related ligands. , 2008, Inorganic chemistry.

[13]  L. López-Banet,et al.  Hydrogen Bonding and Anion Binding in Structures of Tris(pyrazolyl)boratenickel(II) and Phosphate Esters , 2008 .

[14]  M. Jensen,et al.  Harnessing scorpionate ligand equilibria for modeling reduced nickel superoxide dismutase intermediates. , 2008, Inorganic Chemistry.

[15]  W. Myers,et al.  Integrated paramagnetic resonance of high-spin Co(II) in axial symmetry: chemical separation of dipolar and contact electron-nuclear couplings. , 2008, Inorganic chemistry.

[16]  B. Voit,et al.  Synthesis and Characterization of Acetonitrile-Ligated Transition-Metal Complexes with Tetrakis(pentafluorophenyl)borate as Counteranions , 2008 .

[17]  C. Pettinari Scorpionates II: Chelating Borate Ligands , 2008 .

[18]  M. Jensen,et al.  Arylthiolate coordination and reactivity at pseudotetrahedral nickel(II) centers: modulation by noncovalent interactions. , 2008, Inorganic Chemistry.

[19]  Haobin Wang,et al.  Thermodynamics of hydrogen atom transfer to a high-valent iron imido complex. , 2008, Journal of the American Chemical Society.

[20]  Haobin Wang,et al.  Formation of a cobalt(III) imido from a cobalt(II) amido complex. Evidence for proton-coupled electron transfer. , 2007, Journal of the American Chemical Society.

[21]  P. D. Newman,et al.  Trispyrazolylmethane piano stool complexes of iron(II) and cobalt(II) , 2006 .

[22]  Christine M. Thomas,et al.  Characterization of the terminal iron(IV) imides [[PhBP(t)(Bu)2(pz')]Fe(IV)NAd]+. , 2006, Journal of the American Chemical Society.

[23]  M. Nolet,et al.  Allowed and Forbidden d-d Transitions in Poly(3,5-dimethylpyrazolyl)methane Complexes of Nickel(II)† , 2006, Photochemistry and photobiology.

[24]  S. I. Gorelsky,et al.  Spectroscopic and DFT investigation of [M{HB(3,5-iPr2pz)3}(SC6F5)] (M = Mn, Fe, Co, Ni, Cu, and Zn) model complexes: periodic trends in metal-thiolate bonding. , 2005, Inorganic chemistry.

[25]  C. Pettinari,et al.  Metal derivatives of poly(pyrazolyl)alkanes II. Bis(pyrazolyl)alkanes and related systems , 2005 .

[26]  L. Zakharov,et al.  Intramolecular C-H activation by an open-shell cobalt(III) imido complex. , 2005, Angewandte Chemie.

[27]  P. Mountford,et al.  Coordination, organometallic and related chemistry of tris(pyrazolyl)methane ligands. , 2005, Dalton transactions.

[28]  K. Aoki,et al.  Synthesis and Structure of the Mn(II) Complexes with Tripyrazolylborate Ligands: Mn[HB(pz)3]2 and Mn[HB(3,5‐Me2‐pz)3]2 , 2004 .

[29]  M. M. Díaz‐Requejo,et al.  Cyclohexane and benzene amination by catalytic nitrene insertion into C-H bonds with the copper-homoscorpionate catalyst TpBr3CuNCMe. , 2003, Journal of the American Chemical Society.

[30]  I. G. Fomina,et al.  Pentanuclear pivalate Ni(II) and Co(II) clusters: modulation of molecular structures and magnetic properties , 2003 .

[31]  F. A. Schultz,et al.  Metal-bis[poly(pyrazolyl)borate] complexes. Electrochemical, magnetic, and spectroscopic properties and coupled electron-transfer and spin-exchange reactions. , 2003, Inorganic chemistry.

[32]  Steven D. Brown,et al.  A low-spin d5 iron imide: nitrene capture by low-coordinate iron(I) provides the 4-coordinate Fe(III) complex [PhB(CH2PPh2)3]Fe=N-p-tolyl. , 2003, Journal of the American Chemical Society.

[33]  Z. Ciunik,et al.  Complexes of heteroscorpionate trispyrazolylborate ligands. Part VI. Carboxylate induced conversion of mono-ligand Tp′M(L) into bis-ligand Tp′2M complexes (M=Co(II) and Cu(II)) , 2002 .

[34]  S. Hikichi,et al.  Highly labile cationic tris-acetonitrile complexes, [TpRM(NCMe)3]OTf (M = Ni, Co; TpR: hydrotrispyrazolylborato, R = Ph, Me and iPr2): versatile precursors for TpR-containing nickel and cobalt complexes , 2002 .

[35]  D. Jenkins,et al.  Oxidative group transfer to Co(I) affords a terminal Co(III) imido complex. , 2002, Journal of the American Chemical Society.

[36]  Mark D. Smith,et al.  Solid-state structural and magnetic investigations of [M[HC(3,5-Me(2)pz)(3)](2)](BF(4))(2) (M = Fe, Co, Ni, Cu): observation of a thermally induced solid-state phase change controlling an iron(II) spin-state crossover. , 2002, Inorganic chemistry.

[37]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[38]  R. Laitinen,et al.  Halogenation of tellurium by SO2Cl2. Formation and crystal structures of (H3O)[Te3Cl13]·1/2SO2, [(C4H8O)2H][TeCl5]·(C4H8O), [(Me2SO)2H]2[TeCl6], and [Ni(NCCH3)6][Te2Cl10] , 2002 .

[39]  Mark D. Smith,et al.  Synthetic, Structural, Magnetic, and Mössbauer Spectral Study of {Fe[HC(3,5-Me 2 pz) 3 ] 2 }I 2 and Its Spin-State Crossover Behavior , 2002 .

[40]  P. Hitchcock,et al.  The use of trimethylsilyl iodide as a synthon in coordination chemistry , 2002 .

[41]  D. Reger,et al.  Variable-temperature x-ray structural investigation of [Fe[HC(3,5-Me2pz)3]2](BF4)2 (pz= pyrazolyl ring): observation of a thermally induced spin state change from all high spin to an equal high spin-low spin mixture, concomitant with the onset of nonmerohedral twinning. , 2001, Inorganic chemistry.

[42]  D. Reger,et al.  Synthesis, solid-state structure, magnetic properties and Mössbauer spectral studies of {Fe[HC(3,5-Me2pz)3](H2O)3}(BF4)2 , 2001 .

[43]  D. Reger,et al.  A synthetic, structural, magnetic, and spectral study of several [Fe[tris(pyrazolyl)methane]2](BF4)2 complexes: observation of an unusual spin-state crossover. , 2001, Inorganic chemistry.

[44]  D. Reger,et al.  Structural, electronic, and magnetic properties of (Fe[HC(3,5-Me2pz)3]2)(BF4)2 (pz = pyrazolyl): observation of unusual spin-crossover behavior. , 2000, Inorganic chemistry.

[45]  K. J. Brown,et al.  Syntheses of tris(pyrazolyl)methane ligands and {[tris(pyrazolyl)methane]Mn(CO)3}SO3CF3 complexes: comparison of ligand donor properties , 2000 .

[46]  W. Jones,et al.  11B NMR: A New Tool for the Determination of Hapticity of Tris(pyrazolyl)borate Ligands , 1998 .

[47]  N. Kuhn,et al.  Synthese und Kristallstruktur von [Fe(MeCN)6][Fe2OCl6] , 1998 .

[48]  Joel S. Miller,et al.  Sources of Naked Divalent First‐Row Metal Ions: Synthesis and Characterization of [MII(NCMe)6]2+ (M=V, Cr, Mn, Fe, Co, Ni) Salts of Tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate , 1998 .

[49]  F. Cotton,et al.  The exceptional structural versatility of 2,2′-dipyridylamine (Hdpa) and its ions [dpa]− and [H2dpa]+ , 1998 .

[50]  Abraham Nudelman,et al.  NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. , 1997, The Journal of organic chemistry.

[51]  K. Dehnicke,et al.  Die Kristallstruktur von [Mn(CH3CN)6][MnI4] , 1996 .

[52]  M. Berrettoni,et al.  Electrochemical, spectroelectrochemical and X-ray absorption spectroscopic study of some iron(II) and iron(III) polypyrazolylborato complexes , 1995 .

[53]  D. O′Hare,et al.  Synthesis, crystal structures and magnetic properties of salts containing bis[hydrotris(3,5-dimethyl-1-pyrazolyl)borate]iron(III) , 1995 .

[54]  S. Trofimenko Recent advances in poly(pyrazolyl)borate (scorpionate) chemistry , 1993 .

[55]  D. Eichhorn,et al.  M{Hydrotris(3-phenylpyrazol-1-yl)borate}2: sterically encumbered iron(II) and manganese(II) complexes , 1990 .

[56]  P. van der Sluis,et al.  BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions , 1990 .

[57]  K. Christe,et al.  Preparation and characterization of nickel(2+) hexafluorobismuthate(1-) and of the ternary adducts [Ni(CH3CN)6](BiF6)2 and [Ni(CH3CN)6](SbF6)2. Crystal structure of hexakis(acetonitrile-d3)nickel(2+) hexafluoroantimonate , 1988 .

[58]  L. Atovmyan,et al.  Liquid phase oxidation of transition metals. Part 6. iron and copper complexes containing dimethylsulphoxide, dimethylformamide, and acetonitrile. Anomalous states of ligands , 1980 .

[59]  S. Rasmussen,et al.  Hexaacetonitrilenickel(II) tetrachlorozincate. A crystal structure with serious overlap in the Patterson function , 1976 .

[60]  Y. Jeannin,et al.  Étude cristallographique du tétrachloroferrate(III) d'hexaacétonitrile-fer(II) , 1972 .

[61]  S. Trofimenko Geminal poly(1-pyrazolyl)alkanes and their coordination chemistry , 1970 .

[62]  B. Mcgarvey Theory of the Isotropic NMR Shifts in Trigonal Co(II) Complexes , 1970 .

[63]  J. Jesson,et al.  Mössbauer and Magnetic Susceptibility Investigation of the 5T2−1A1 Crossover in Some Octahedral Ferrous Complexes in the Solid State , 1968 .

[64]  J. Jesson Isotropic Nuclear Resonance Shifts in Some Trigonal Co(II) and Ni(II) Chelate Systems , 1967 .

[65]  J. Jesson,et al.  Spin equilibria in octahedral iron(II) poly((1-pyrazolyl)-borates , 1967 .

[66]  J. Jesson,et al.  Spectra and structure of some transition metal poly(1-pyrazolyl) borates , 1967 .

[67]  S. Trofimenko Boron-pyrazole chemistry. II. Poly(1-pyrazolyl)-borates , 1967 .

[68]  J. Jesson Optical and Paramagnetic Resonance Spectra of Some Trigonal Co(II) Chelates , 1966 .

[69]  R. Taylor,et al.  Isotropic Proton Magnetic Resonance Shifts in π-Bonding Ligands Coordinated to Paramagnetic Nickel(II) and Cobalt(II) Acetylacetonates , 1964 .

[70]  C. Carrano,et al.  New H-bond accepting tris(pyrazolyl)borates: stabilization of metal aquo species as models for the vicinal oxygen chelate enzyme superfamily , 2001 .

[71]  R. Blessing,et al.  An empirical correction for absorption anisotropy. , 1995, Acta crystallographica. Section A, Foundations of crystallography.

[72]  J. Gulbis,et al.  Structure, spectroscopic and angular-overlap studies of tris(pyrazol-1-yl)methane complexes , 1993 .

[73]  M. Veith,et al.  Darstellung und Strukturen von Chlorostannaten(II). II. Neue Chlorostannate(II) von zweiwertigen Kationen , 1989 .

[74]  D. Evans,et al.  Water-soluble hexadentate Schiff-base ligands as sequestrating agents for iron(III) and gallium(III) , 1988 .

[75]  L. Banci,et al.  Spectral-structural correlations in high-spin cobalt(II) complexes , 1982 .

[76]  W. O. Milligan,et al.  Iron-nitrogen bond lengths in low-spin and high-spin iron(II) complexes with poly(pyrazolyl)borate ligands , 1980 .

[77]  A. Underhill,et al.  468. The preparation and properties of some bivalent transition-metal tetrafluoroborate–methyl cyanide complexes , 1962 .