The Theoretical Determination of Phosphorus NMR Chemical Shielding

[1]  D. B. Chesnut Ab initio NMR chemical shieldings in the neutral and charged 7-phosphabicyclo[2.2.1]heptane, -heptene, and -heptadiene systems; the largest predicted downfield shift for a conventional organophosphorus molecule , 1997 .

[2]  L. D. Quin,et al.  1-(2,4,6-Tri-tert-butylphenyl)-3-methylphosphole: A Phosphole with a Significantly Flattened Phosphorus Pyramid Having Pronounced Characteristics of Aromaticity , 1997 .

[3]  D. B. Chesnut,et al.  Resonance revisited: A consideration of the calculation of cyclic conjugation energies , 1997, J. Comput. Chem..

[4]  D. B. Chesnut,et al.  The use of locally dense basis sets in correlated NMR chemical shielding calculations , 1996 .

[5]  D. Hockless,et al.  Direct Syntheses of 1-Phenylphosphetane and 1-Phenylphosphirane. Crystal and Molecular Structures of Neutral and Cationic Cyclotrimerization Precursor Complexes , 1996 .

[6]  D. B. Chesnut An approximate infinite order perturbation theory prescription for isotropic NMR chemical shieldings , 1995 .

[7]  D. B. Chesnut A comparative quantum mechanical study of bond separation energies as a measure of cyclic conjugation , 1995, J. Comput. Chem..

[8]  P. Pulay,et al.  Chemical shift anisotropies in silicon containing three-membered rings. An ab initio study , 1995 .

[9]  D. B. Chesnut,et al.  Characterization of NMR Deshielding in Phosphole and the Phospholide Ion , 1994 .

[10]  D. B. Chesnut,et al.  Characterization of NMR shielding in 7-phosphanorbornenes , 1993 .

[11]  D. B. Chesnut,et al.  Use of locally dense basis sets for nuclear magnetic resonance shielding calculations , 1993, J. Comput. Chem..

[12]  J. Gauss Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts , 1993 .

[13]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[14]  J. Gauss Calculation of NMR chemical shifts at second-order many-body perturbation theory using gauge-including atomic orbitals , 1992 .

[15]  G. Tóth,et al.  The Formation of Phosphepine 1-Oxides in the Reaction of 1,2-Dihydrophosphinine 1-Oxides with Dichlorocarbene. , 1990 .

[16]  A. Jameson,et al.  Absolute shielding scale for 31P from gas-phase NMR studies , 1990 .

[17]  D. B. Chesnut,et al.  Locally dense basis sets for chemical shift calculations , 1989 .

[18]  K. Karaghiosoff,et al.  THE CHEMICAL SHIFT OF TWO-COORDINATE PHOSPHORUS, II1,2 HETEROCYCLES , 1988 .

[19]  F. Mathey The organic chemistry of phospholes , 1988 .

[20]  R. Wasylishen,et al.  The influence of charge on nuclear magnetic resonance isotope effects , 1987 .

[21]  J. E. Boggs,et al.  Geometries and rotation barriers of the simplest acylphosphines: Ab initio gradient calculations of the structures of formylphosphine and acetyldimethylphosphine , 1986 .

[22]  G. Huttner,et al.  [Cr(CO)5]2PtBu, ein phosphinidenkomplex mit extremer 31P-tieffeldverschiebung , 1984 .

[23]  F. Mathey,et al.  Proton [1,5] shifts in P-unsubstituted 1H-phospholes. Synthesis and chemistry of 2H-phosphole dimers , 1983 .

[24]  F. Bickelhaupt,et al.  Stable unsymmetrical diphosphenes , 1983 .

[25]  N. C. Norman,et al.  Synthesis and structure of a diarsene: the first compound with an unsupported arsenic-arsenic double bond , 1983 .

[26]  L. D. Quin,et al.  Conformational studies of the phosphorinane system based on low-temperature phosphorus-31 nuclear magnetic resonance spectroscopy , 1975 .

[27]  G. Fritz,et al.  NMR-Untersuchungen an Silylphosphinen. II. Substituenteneinflüsse in Silyl- und Silylmethylphosphinen , 1974 .

[28]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .

[29]  G. Zon,et al.  Barriers to pyramidal inversion at phosphorus in phospholes, phosphindoles, and dibenzophospholes , 1971 .

[30]  W. Klemperer,et al.  Molecular Beam Electric Resonance Spectrum of 31P14N , 1971 .

[31]  L. D. Quin,et al.  Molecular structure of 1-benzylphosphole by x-ray analysis , 1970 .

[32]  W. Mcfarlane,et al.  Group contributions to phosphorus-31 chemical shifts of tertiary phosphines , 1967 .

[33]  F. Johnson,et al.  NOVEL HETEROCYCLO PENTADIENES , 1959 .

[34]  D. B. Chesnut,et al.  The characterization of NMR shielding in monocyclic phosphines , 1997 .

[35]  D. B. Chesnut,et al.  The inclusion of correlation in the calculation of phosphorus NMR chemical shieldings , 1996 .

[36]  A. Willis,et al.  Direct syntheses of 1-phenylphosphetane and 1-phenylphosphirane. Crystal and molecular structures of cyclotrimerisation precursor complexes fac-[Mo(CO)3(PhPCH2CH2CH2)3] and fac-[Mo(CO)3(PhPCH2CH2)3] , 1994 .

[37]  F. Mathey,et al.  Characterisation of the parent phosphole and phospholyl anion and some of their C-substituted derivatives by 1H and 13C NMR spectroscopy , 1987 .

[38]  L. Wiesenfeld,et al.  31P and 13C NMR study of tribenzolyphosphine (CC6H5)3 Oriented in a Liquid Crystal , 1980 .

[39]  L. D. Quin,et al.  Evidence for delocalization in phosphole anions from their 31P n.m.r. spectra , 1979 .

[40]  K. Mislow,et al.  The barrier to carbon-phosphorus bond rotation in tribenzoylphosphine. An experimental reinvestigation , 1979 .

[41]  H. Goldwhite,et al.  The nature of the carbon–phosphorus bond in methylidynephosphine , 1975 .

[42]  J. J. Breen,et al.  Steric effects in 31P NMR spectra: ‘Gamma’ shielding in aliphatic phosphorus compounds , 1973 .

[43]  R. Friedel,et al.  Sulfur-33 magnetic resonance spectra of selected compounds , 1972 .

[44]  E. Fluck,et al.  31P nuclear magnetic resonance chemical shifts of elemental phosphorus in the gas phase , 1972 .

[45]  P. Diehl,et al.  Chemische Verschiebungen in der kernmagnetischen Resonanz von 17O in organischen Verbindungen , 1961 .