Improved min-sum decoding algorithms for irregular LDPC codes
暂无分享,去创建一个
Yan Li | Jinghu Chen | Robert Michael Tanner | Christopher R. Jones | Christopher Jones | R. M. Tanner | Yan Li | Jinghu Chen
[1] Jinghu Chen,et al. Near optimum universal belief propagation based decoding of low-density parity check codes , 2002, IEEE Trans. Commun..
[2] Sae-Young Chung,et al. On the construction of some capacity-approaching coding schemes , 2000 .
[3] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[4] Jinghu Chen,et al. Density evolution for two improved BP-Based decoding algorithms of LDPC codes , 2002, IEEE Communications Letters.
[5] Rüdiger L. Urbanke,et al. The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.
[6] Niclas Wiberg,et al. Codes and Decoding on General Graphs , 1996 .
[7] Ajay Dholakia,et al. Reduced-complexity decoding of LDPC codes , 2005, IEEE Transactions on Communications.
[8] Hideki Imai,et al. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation , 1999, IEEE Trans. Commun..
[9] Richard D. Wesel,et al. Selective avoidance of cycles in irregular LDPC code construction , 2004, IEEE Transactions on Communications.
[10] Thomas J. Richardson,et al. Error Floors of LDPC Codes , 2003 .
[11] X. Jin. Factor graphs and the Sum-Product Algorithm , 2002 .
[12] Richard D. Wesel,et al. Analysis of an algorithm for irregular LDPC code construction , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..