Combining classifiers - concept and applications

[1]  Michal Wozniak,et al.  Some Remarks on Chosen Methods of Classifier Fusion Based on Weighted Voting , 2009, HAIS.

[2]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[3]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[4]  Louis Vuurpijl,et al.  An overview and comparison of voting methods for pattern recognition , 2002, Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition.

[5]  Fabio Roli,et al.  A theoretical and experimental analysis of linear combiners for multiple classifier systems , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Kagan Tumer,et al.  Analysis of decision boundaries in linearly combined neural classifiers , 1996, Pattern Recognit..

[7]  Sarunas Raudys Trainable fusion rules. II. Small sample-size effects , 2006, Neural Networks.

[8]  Michal Wozniak,et al.  Designing Fusers on the Basis of Discriminants - Evolutionary and Neural Methods of Training , 2010, HAIS.

[9]  Sarunas Raudys,et al.  Trainable fusion rules. I. Large sample size case , 2006, Neural Networks.

[10]  Robert P. W. Duin,et al.  Limits on the majority vote accuracy in classifier fusion , 2003, Pattern Analysis & Applications.

[11]  C. K. Chow,et al.  Statistical Independence and Threshold Functions , 1965, IEEE Trans. Electron. Comput..

[12]  Sherif Hashem,et al.  Optimal Linear Combinations of Neural Networks , 1997, Neural Networks.

[13]  Nageswara S. V. Rao A Generic Sensor Fusion Problem: Classification and Function Estimation , 2004, Multiple Classifier Systems.

[14]  Robert P. W. Duin,et al.  The combining classifier: to train or not to train? , 2002, Object recognition supported by user interaction for service robots.

[15]  A.C. Campilho,et al.  Combining independent and unbiased classifiers using weighted average , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[16]  Lars Kai Hansen,et al.  Neural Network Ensembles , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  R. Polikar,et al.  Ensemble based systems in decision making , 2006, IEEE Circuits and Systems Magazine.

[18]  Michal Wozniak Evolutionary approach to produce classifier ensemble based on weighted voting , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[19]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Kevin W. Bowyer,et al.  Combination of Multiple Classifiers Using Local Accuracy Estimates , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[22]  Derek Partridge,et al.  Software Diversity: Practical Statistics for Its Measurement and Exploitation | Draft Currently under Revision , 1996 .

[23]  Hirotaka Inoue,et al.  Optimizing a Multiple Classifier System , 2002, PRICAI.

[24]  Josef Kittler,et al.  Sum Versus Vote Fusion in Multiple Classifier Systems , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Robert P. W. Duin,et al.  Experiments with Classifier Combining Rules , 2000, Multiple Classifier Systems.