Robust grey-box closed-loop stop-and-go control

This paper presents a robust stop-and-go control law, especially well adapted to car following scenarios in urban environments. Since many vehicle/road interaction factors (road slope, rolling resistance, aerodynamic forces) are very poorly known and measurements are quite noisy, a robust strategy is proposed within an algebraic framework. On the one hand, noisy signals will be processed in order to obtain accurate derivatives, and thereafter, variable estimates. On the other hand, a grey-box closed-loop control will be implemented to compensate all kind of unmodeled dynamics or parameter uncertainties.

[1]  K. Youcef-Toumi,et al.  The Application of Time Delay Control to an Intelligent Cruise Control System , 1992, 1992 American Control Conference.

[2]  Hans B. Pacejka,et al.  THE MAGIC FORMULA TYRE MODEL , 1991 .

[3]  George Leitmann,et al.  Dynamics and Control , 2020, Fundamentals of Robotics.

[4]  K. Yosida Operational Calculus: A Theory of Hyperfunctions , 1984 .

[5]  M. Fliess,et al.  A revised look at numerical differentiation with an application to nonlinear feedback control , 2007, 2007 Mediterranean Conference on Control & Automation.

[6]  Mike McDonald,et al.  Car-following: a historical review , 1999 .

[7]  M. Fliess,et al.  Commande sans modèle et commande à modèle restreint , 2008 .

[8]  Cédric Join,et al.  Etude préliminaire d'une commande sans modèle pour papillon de moteur , 2008 .

[9]  Jim Winkelman,et al.  Adaptive automotive speed control , 1993, IEEE Trans. Autom. Control..

[10]  Kyongsu Yi,et al.  A driver-adaptive stop-and-go Cruise control strategy , 2004, IEEE International Conference on Networking, Sensing and Control, 2004.

[11]  Azim Eskandarian,et al.  Research advances in intelligent collision avoidance and adaptive cruise control , 2003, IEEE Trans. Intell. Transp. Syst..

[12]  Petros A. Ioannou,et al.  Throttle and Brake Control Systems for Automatic Vehicle following , 1994, J. Intell. Transp. Syst..

[13]  R. Stengel,et al.  CONTROL systems. , 1952, Hospitals.

[14]  Mikael Persson Stop & Go Controller for Adaptive Cruise Control , 1998 .

[15]  Rolf Johansson,et al.  Stop and go controller for adaptive cruise control , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[16]  Petros A. Ioannou,et al.  Automatic Vehicle-Following , 1992, 1992 American Control Conference.

[17]  Carlos Canudas-de-Wit,et al.  A Safe Longitudinal Control for Adaptive Cruise Control and Stop-and-Go Scenarios , 2007, IEEE Transactions on Control Systems Technology.

[18]  Lydie Nouvelière,et al.  Experimental vehicle longitudinal control using a second order sliding mode technique , 2007 .

[19]  J.K. Hedrick,et al.  Longitudinal Vehicle Controller Design for IVHS Systems , 1991, 1991 American Control Conference.

[20]  H. Mounier,et al.  Estimation of longitudinal and lateral vehicle velocities: An algebraic approach , 2008, 2008 American Control Conference.

[21]  Uwe Kiencke,et al.  Automotive Control Systems , 2005 .

[22]  Taketoshi Kunimatsu,et al.  Modeling of driver following behavior based on minimum-jerk theory , 2005 .

[23]  Rajesh Rajamani,et al.  Vehicle dynamics and control , 2005 .

[24]  Cédric Join,et al.  Non-linear estimation is easy , 2007, Int. J. Model. Identif. Control..