The current status of time-resolved XAS beamline at SLRI and application on in situ experiments

[1]  G. Rupprechter,et al.  Pore size effects on physicochemical properties of Fe-Co/K-Al2O3 catalysts and their catalytic activity in CO2 hydrogenation to light olefins , 2019, Applied Surface Science.

[2]  N. Chanlek,et al.  The development of disposable electrochemical sensor based on Fe3O4-doped reduced graphene oxide modified magnetic screen-printed electrode for ractopamine determination in pork sample , 2019, Sensors and Actuators B: Chemical.

[3]  Thongthai Witoon,et al.  Green and sustainable methanol production from CO 2 over magnetized Fe Cu/core–shell and infiltrate mesoporous silica-aluminosilicates , 2018 .

[4]  K. Leifer,et al.  Composition, structure and magnetic properties of ultra-thin Fe/Ni multilayers sputter deposited on epitaxial Cu/Si(001) , 2018 .

[5]  T. Osotchan,et al.  In-situ monitoring of electro-deposition for iron-nickle thin film by time-resolved X-ray absorption spectroscopy , 2018 .

[6]  S. Assabumrungrat,et al.  Reduction of carbon dioxide via catalytic hydrogenation over copper-based catalysts modified by oyster shell-derived calcium oxide , 2017 .

[7]  Wei Xia,et al.  Effects of Potassium and Manganese Promoters on Nitrogen-Doped Carbon Nanotube-Supported Iron Catalysts for CO 2 Hydrogenation , 2017 .

[8]  Thongthai Witoon,et al.  CO2 hydrogenation to methanol over CuO–ZnO–ZrO2–SiO2 catalysts: Effects of SiO2 contents , 2017 .

[9]  R. Yimnirun,et al.  SUT-NANOTEC-SLRI beamline for X-ray absorption spectroscopy. , 2017, Journal of synchrotron radiation.

[10]  G. Rupprechter,et al.  Cleaner production of methanol from carbon dioxide over copper and iron supported MCM-41 catalysts using innovative integrated magnetic field-packed bed reactor , 2017 .

[11]  M. Aliofkhazraei,et al.  Electrodeposition of Ni-Fe alloys, composites, and nano coatings–A review , 2017 .

[12]  G. Berruyer,et al.  The Time-resolved and Extreme-conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the energy-dispersive X-ray absorption spectroscopy beamline ID24 , 2016, Journal of synchrotron radiation.

[13]  Y. Chiang,et al.  XANES Investigation of Dynamic Phase Transition in Olivine Cathode for Li‐Ion Batteries , 2015 .

[14]  T. Osotchan,et al.  Thermal Annealing Effect on Real Time Atomic Relocation of Iron-Cobalt Alloys Prepared by Electro-Deposition , 2015 .

[15]  W. Klysubun,et al.  Performance and status of beamline BL8 at SLRI for X-ray absorption spectroscopy. , 2012, Journal of synchrotron radiation.

[16]  S. Klinkhieo,et al.  Time-resolved XAS (Bonn-SUT-SLRI) beamline at SLRI. , 2012, Journal of synchrotron radiation.

[17]  Olivier Mathon,et al.  Advances in high brilliance energy dispersive X-ray absorption spectroscopy. , 2010, Physical chemistry chemical physics : PCCP.

[18]  F. Ribeiro,et al.  Determination of CO, H2O and H2 coverage by XANES and EXAFS on Pt and Au during water gas shift reaction. , 2010, Physical chemistry chemical physics : PCCP.

[19]  Grant Bunker,et al.  Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy , 2010 .

[20]  F. He,et al.  Electrodeposition of Ni, Fe and Ni-Fe alloys on a 316 stainless steel surface in a fluorborate bath , 2009 .

[21]  D. Ramaker,et al.  Characterization of Ligand Effects on Water Activation in Triarylphosphine-Stabilized Pt Nanoparticle Catalysts by X-ray Absorption Spectroscopy , 2008 .

[22]  D. Ramaker,et al.  Structure of ethene adsorption sites on supported metal catalysts from in situ XANES Analysis. , 2007, Journal of the American Chemical Society.

[23]  S. Mukerjee,et al.  CO Coverage/Oxidation Correlated with PtRu Electrocatalyst Particle Morphology in 0.3 M Methanol by In Situ XAS , 2007 .

[24]  M. Drofenik,et al.  The synthesis of iron–nickel alloy nanoparticles using a reverse micelle technique , 2006 .

[25]  D. Siddons,et al.  Cam-driven monochromator for QEXAFS , 2006 .

[26]  R. Bal,et al.  Direct phenol synthesis by selective oxidation of benzene with molecular oxygen on an interstitial-N/Re cluster/zeolite catalyst. , 2006, Angewandte Chemie.

[27]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[28]  R. Ramanujan,et al.  Mechanical alloying of Fe–Ni based nanostructured magnetic materials , 2005 .

[29]  J. Fierro,et al.  Hydrogenation of aromatics over Au-Pd/SiO2-Al2O3 catalysts; support acidity effect , 2004 .

[30]  B. Dobson,et al.  XSTRIP—a silicon microstrip-based X-ray detector for ultra-fast X-ray spectroscopy studies , 2003 .

[31]  S. Grundmann,et al.  Piezo-QEXAFS with fluorescence detection: fast time-resolved investigations of dilute specimens. , 2001, Journal of synchrotron radiation.

[32]  Uwe Erb,et al.  Electrodeposition of nanocrystalline Ni-Fe alloys , 1995 .

[33]  J. Hormes,et al.  A new energy dispersive x-ray monochromator for soft x-ray applications , 1992 .

[34]  R. Frahm,et al.  Quick scanning exafs: First experiments , 1988 .

[35]  T. Matsushita,et al.  LINEAR DETECTOR FOR TIME-RESOLVED EXAFS IN DISPERSIVE MODE , 1986 .

[36]  A. Fontaine,et al.  Extended X-ray absorption fine structure in dispersive mode , 1982 .

[37]  Tadashi Matsushita,et al.  A Fast X-Ray Absorption Spectrometer for Use with Synchrotron Radiation , 1981 .