Prediction of multilayer adsorption and capillary condensation phenomena in cylindrical mesopores

[1]  K. Morishige,et al.  Capillary condensation of nitrogen in MCM-41 and SBA-15 , 2002 .

[2]  J. Choma,et al.  CRITICAL APPRAISAL OF CLASSICAL METHODS FOR DETERMINATION OF MESOPORE SIZE DISTRIBUTIONS OF MCM-41 MATERIALS , 2002 .

[3]  S. Bhatia,et al.  Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves , 2001 .

[4]  G. Øye,et al.  Synthesis, characterization and potential applications of new materials in the mesoporous range. , 2001, Advances in colloid and interface science.

[5]  G. Lu,et al.  Characterization of the structural and surface properties of chemically modified MCM-41 material , 2000 .

[6]  Brian J. Melde,et al.  Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age , 2000 .

[7]  S. Bhatia,et al.  Characterization of Pore Size Distributions of Mesoporous Materials from Adsorption Isotherms , 2000 .

[8]  K. Gubbins,et al.  Phase separation in confined systems , 1999 .

[9]  D. Zhao,et al.  Evaluating Pore Sizes in Mesoporous Materials: A Simplified Standard Adsorption Method and a Simplified Broekhoff−de Boer Method , 1999 .

[10]  J. P. Olivier,et al.  Standard Nitrogen Adsorption Data for Characterization of Nanoporous Silicas , 1999 .

[11]  L. A. Ni,et al.  A pore-size-dependent equation of state for multilayer adsorption in cylindrical mesopores , 1999 .

[12]  Toshiaki Mori,et al.  Postsynthesis Hydrothermal Restructuring of M41S Mesoporous Molecular Sieves in Water , 1999 .

[13]  F. Renzo,et al.  Micelle-templated silicates as a test bed for methods of mesopore size evaluation , 1999 .

[14]  F. Schüth,et al.  Ordered mesoporous materials , 1999 .

[15]  J. Ying,et al.  SYNTHESIS AND APPLICATIONS OF SUPRAMOLECULAR-TEMPLATED MESOPOROUS MATERIALS , 1999 .

[16]  S. Bhatia,et al.  Adsorption in mesopores: a molecular-continuum model with application to MCM-41 , 1998 .

[17]  S. Bhatia,et al.  Experimental and Theoretical Investigations of Adsorption Hysteresis and Criticality in MCM-41: Studies with O2, Ar, and CO2† , 1998 .

[18]  M. Donohue,et al.  Analysis of adsorption isotherms : Lattice Theory predictions, classification of isotherms for gas-solid equilibria, and similarities in gas and liquid adsorption behavior , 1998 .

[19]  S. Bhatia,et al.  Capillary Coexistence and Criticality in Mesopores: Modification of the Kelvin Theory , 1998 .

[20]  Ping Liu,et al.  Non-silica periodic mesostructured materials: recent progress , 1997 .

[21]  M. Jaroniec,et al.  Characterization of Large-Pore MCM-41 Molecular Sieves Obtained via Hydrothermal Restructuring , 1997 .

[22]  M. Jaroniec,et al.  Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements , 1997 .

[23]  K. Morishige,et al.  Capillary Critical Point of Argon, Nitrogen, Oxygen, Ethylene, and Carbon Dioxide in MCM-41 , 1997 .

[24]  M. Jaroniec,et al.  Adsorption Study of Surface and Structural Properties of MCM-41 Materials of Different Pore Sizes , 1997 .

[25]  C. Brinker,et al.  Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas , 1996 .

[26]  Gao Qing Lu,et al.  Advances in mesoporous molecular sieve MCM-41 , 1996 .

[27]  A. Zukal,et al.  Comparison plots: recent applications , 1996 .

[28]  Q. Huo,et al.  Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials , 1996 .

[29]  J. Tóth Uniform interpretation of gas/solid adsorption , 1995 .

[30]  J. B. Higgins,et al.  Model Structures for MCM-41 Materials: A Molecular Dynamics Simulation , 1994 .

[31]  Mark E. Davis,et al.  Studies on mesoporous materialsI. Synthesis and characterization of MCM-41 , 1993 .

[32]  Q. Huo,et al.  Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures , 1993, Science.

[33]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[34]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[35]  S. J. Gregg,et al.  Adsorption Surface Area and Porosity , 1967 .

[36]  J. Boer,et al.  Studies on pore systems in catalysts: IX. Calculation of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores A. Fundamental equations , 1967 .

[37]  M. Jaroniec,et al.  Determination of Pore Size and Pore Wall Structure of MCM-41 by Using Nitrogen Adsorption, Transmission Electron Microscopy, and X-ray Diffraction , 2000 .

[38]  M. Jaroniec,et al.  Recent advances in adsorption characterization of mesoporous molecular sieves , 2000 .

[39]  R. Ryoo,et al.  Synthesis of highly ordered MCM-41 by micelle-packing control with mixed surfactants , 1999 .

[40]  Huaiyong Zhu,et al.  Thickness and stability of adsorbed film in cylindrical mesopores , 1998 .

[41]  C. Guizard,et al.  Synthesis and characterization of inorganic gels in a lyotropic liquid crystal medium. Part 2.-Synthesis of silica gels in lyotropic crystal phases obtained from cationic surfactants , 1996 .

[42]  K. Sing,et al.  Physisorption of argon, nitrogen and oxygen by MCM-41, a model mesoporous adsorbent , 1994 .

[43]  Ilya Prigogine,et al.  Surface tension and adsorption , 1966 .