Spectral radius and Hamiltonicity of graphs with large minimum degree

AbstractLet G be a graph of order n and λ(G) the spectral radius of its adjacency matrix. We extend some recent results on sufficient conditions for Hamiltonian paths and cycles in G. One of the main results of the paper is the following theoremLet k ≥ 2, n ≥ k3 + k + 4, and let G be a graph of order n, with minimum degree δ(G) ≥ k. If $$\lambda \left( G \right) \geqslant n - k - 1$$λ(G)≥n−k−1 , then G has a Hamiltonian cycle, unless G = K1∨(Kn−k−1+Kk) or G = Kk∨(Kn−2k+ $${\bar K_k}$$K¯k ).

[1]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[2]  V. Chvátal On Hamilton's ideals , 1972 .

[3]  Jun Ge,et al.  Spectral radius and Hamiltonian properties of graphs, II , 2013, Linear and Multilinear Algebra.

[4]  Rao Li Signless Laplacian Spectral Radius and Some Hamiltonian Properties of Graphs , 2015 .

[5]  V. I. Benediktovich Spectral condition for hamiltonicity of a graph , 2016 .

[6]  Yi-Zheng Fan,et al.  Spectral Condition for a Graph to be Hamiltonian with respect to Normalized Laplacian , 2012 .

[7]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[8]  Zhao Ke-wen Hamilton-connected graphs with neighborhood union conditions , 2003 .

[9]  Ruifang Liu,et al.  Sufficient spectral conditions on Hamiltonian and traceable graphs , 2014, 1412.5273.

[10]  Bo Zhou,et al.  Signless Laplacian spectral radius and Hamiltonicity , 2010 .

[11]  P Erdős (1) 15* Remarks on a Paper of Pósa , .

[12]  O. Ore Arc coverings of graphs , 1961 .

[13]  John Adrian Bondy,et al.  A method in graph theory , 1976, Discret. Math..

[14]  Benny Sudakov,et al.  Sparse pseudo-random graphs are Hamiltonian , 2003, J. Graph Theory.

[15]  Vladimir Nikiforov,et al.  Some Inequalities for the Largest Eigenvalue of a Graph , 2002, Combinatorics, Probability and Computing.

[16]  Huiqing Liu,et al.  Spectral radius and Hamiltonian graphs , 2012 .

[17]  Binlong Li,et al.  Spectral analogues of Erdős’ and Moon–Moser’s theorems on Hamilton cycles , 2015, 1504.03556.

[18]  Yuan Hong,et al.  A Sharp Upper Bound of the Spectral Radius of Graphs , 2001, J. Comb. Theory, Ser. B.

[19]  Vladimir Nikiforov,et al.  Spectral radius and Hamiltonicity of graphs , 2009, 0903.5353.

[20]  Bo Ning,et al.  Spectral radius and Hamiltonian properties of graphs , 2013, 1309.0217.

[21]  Steve Butler,et al.  Small Spectral Gap in the Combinatorial Laplacian Implies Hamiltonian , 2010 .