Towards Adjusting Mobile Devices to User's Behaviour

Mobile devices are a special class of resource-constrained embedded devices. Computing power, memory, the available energy, and network bandwidth are often severely limited. These constrained resources require extensive optimization of a mobile system compared to larger systems. Any needless operation has to be avoided. Timeconsuming operations have to be started early on. For instance, loading files ideally starts before the user wants to access the file. So-called prefetching strategies optimize system's operation. Our goal is to adjust such strategies on the basis of logged system data. Optimization is then achieved by predicting an application's behavior based on facts learned from earlier runs on the same system. In this paper, we analyze system-calls on operating system level and compare two paradigms, namely server-based and device-based learning. The results could be used to optimize the runtime behaviour of mobile devices.

[1]  William G. Jacoby Issue Framing and Public Opinion on Government Spending , 2000 .

[2]  Bryan Cantrill,et al.  Dynamic Instrumentation of Production Systems , 2004, USENIX Annual Technical Conference, General Track.

[3]  Jon M. Kleinberg,et al.  Feedback effects between similarity and social influence in online communities , 2008, KDD.

[4]  Philip S. Yu,et al.  A Survey of Synopsis Construction in Data Streams , 2007, Data Streams - Models and Algorithms.

[5]  Dominik Benz,et al.  Visit me, click me, be my friend: an analysis of evidence networks of user relationships in BibSonomy , 2010, HT '10.

[6]  Roel Wieringa,et al.  Requirements Engineering: Problem Analysis and Solution Specification (Extended Abstract) , 2004, ICWE.

[7]  Alessandro Acquisti,et al.  Imagined Communities: Awareness, Information Sharing, and Privacy on the Facebook , 2006, Privacy Enhancing Technologies.

[8]  Michael Meier,et al.  Learning SQL for Database Intrusion Detection using Context-Sensitive Modelling , 2009, LWA.

[9]  Ben Taskar,et al.  An Introduction to Conditional Random Fields for Relational Learning , 2007 .

[10]  Rob Malouf,et al.  A Comparison of Algorithms for Maximum Entropy Parameter Estimation , 2002, CoNLL.

[11]  Ann Macintosh,et al.  Computer-Supported Argument Maps as a Policy Memory , 2007, Inf. Soc..

[12]  Julita Vassileva,et al.  A System Dynamics Approach to Study Virtual Communities , 2007, 2007 40th Annual Hawaii International Conference on System Sciences (HICSS'07).

[13]  L. Anselin,et al.  Toward Spatially Integrated Social Science , 2000 .

[14]  Philip S. Yu,et al.  A Framework for Clustering Evolving Data Streams , 2003, VLDB.

[15]  Jürgen Schmidhuber,et al.  Learning dynamic algorithm portfolios , 2006, Annals of Mathematics and Artificial Intelligence.

[16]  Shashi Shekhar,et al.  Spatial Databases: A Tour , 2003 .

[17]  Philip S. Yu,et al.  Identifying the influential bloggers in a community , 2008, WSDM '08.

[18]  Mark Newman,et al.  Detecting community structure in networks , 2004 .

[19]  Manuel A. Pérez-Quiñones,et al.  NET GAINS IN POLITICAL PARTICIPATION: Secondary effects of Internet on community , 2008 .

[20]  B. Everitt,et al.  Statistical methods for rates and proportions , 1973 .

[21]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[22]  Shonali Krishnaswamy,et al.  Mining data streams: a review , 2005, SGMD.

[23]  Kim Strandberg,et al.  The challenge of deliberative democracy online - A comparison of face-to-face and virtual experiments in citizen deliberation , 2009, Inf. Polity.

[24]  Yifan Li,et al.  Clustering moving objects , 2004, KDD.

[25]  Rob Malouf,et al.  Markov Models for Language-independent Named Entity Recognition , 2002, CoNLL.

[26]  Padhraic Smyth,et al.  Trajectory clustering with mixtures of regression models , 1999, KDD '99.

[27]  P. Costa,et al.  Gender differences in personality traits across cultures: robust and surprising findings. , 2001, Journal of personality and social psychology.

[28]  Divesh Srivastava,et al.  Finding hierarchical heavy hitters in streaming data , 2008, TKDD.

[29]  D. West E‐Government and the Transformation of Service Delivery and Citizen Attitudes , 2004 .

[30]  F. Weichert,et al.  Reducing the Energy Consumption of Embedded Systems by Integrating General Purpose GPUs , 2010 .

[31]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[32]  Mike Thelwall,et al.  Technology, genres, and value change: Literary authors and artistic use of information technology , 2008, J. Assoc. Inf. Sci. Technol..

[33]  L. Lee-Kelley,et al.  Citizens' attitudes towards e‐government and e‐governance: a UK study , 2008 .

[34]  Fernando Díaz,et al.  Automatic parameter tuning with a Bayesian case-based reasoning system. A case of study , 2009, Expert Syst. Appl..

[35]  Wolfgang Schröder-Preikschat,et al.  CiAO: An Aspect-Oriented Operating-System Family for Resource-Constrained Embedded Systems , 2009, USENIX Annual Technical Conference.

[36]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[37]  R. Kwok Personal technology: Phoning in data , 2009, Nature.

[38]  Jonathan Goldstein,et al.  When Is ''Nearest Neighbor'' Meaningful? , 1999, ICDT.

[39]  R. McCrae,et al.  Toward a Geography of Personality Traits , 2004 .

[40]  A. Agresti An introduction to categorical data analysis , 1997 .

[41]  Jason Martin,et al.  Ethno-Racial Identity Displays on Facebook , 2009, J. Comput. Mediat. Commun..

[42]  Charles Mayo,et al.  Legislators and constituents: Examining demographics and online communication tools , 2008, Inf. Polity.

[43]  Vittorio Loreto,et al.  Network properties of folksonomies , 2007, AI Commun..

[44]  Andreas Hotho,et al.  Logsonomy - social information retrieval with logdata , 2008, Hypertext.

[45]  G. Hofstede,et al.  Culture′s Consequences: International Differences in Work-Related Values , 1980 .

[46]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[47]  Robert E. Goodin,et al.  Deliberative Impacts: The Macro-Political Uptake of Mini-Publics , 2006 .

[48]  S. Chawla,et al.  An Integrated Approach to Mining Data Streams , 2004 .

[49]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[50]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.

[51]  J. Coie,et al.  A Behavioral Analysis of Emerging Social Status in Boys' Groups. , 1983 .

[52]  Peter Muhlberger,et al.  Human Agency and the Revitalization of the Public Sphere , 2005 .

[53]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[54]  Michael Meier,et al.  Learning SQL for Database Intrusion Detection Using Context-Sensitive Modelling (Extended Abstract) , 2009, DIMVA.

[55]  Pedro M. Domingos,et al.  Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier , 1996, ICML.

[56]  Gregory F. Cooper,et al.  The ALARM Monitoring System: A Case Study with two Probabilistic Inference Techniques for Belief Networks , 1989, AIME.

[57]  Donato Malerba,et al.  Spatial Clustering of Structured Objects , 2005, ILP.

[58]  P. Cozby Self-disclosure: a literature review. , 1973, Psychological bulletin.

[59]  Gregory R. Ganger,et al.  The DiskSim Simulation Environment Version 4.0 Reference Manual (CMU-PDL-08-101) , 1998 .

[60]  G. Hofstede Masculinity and Femininity: The Taboo Dimension of National Cultures , 1998 .

[61]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[62]  Sudipto Guha,et al.  Streaming-data algorithms for high-quality clustering , 2002, Proceedings 18th International Conference on Data Engineering.

[63]  Jacob Cohen,et al.  Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. , 1968 .

[64]  Andrew McCallum,et al.  An Introduction to Conditional Random Fields , 2010, Found. Trends Mach. Learn..

[65]  Andrea Lancichinetti,et al.  Community detection algorithms: a comparative analysis: invited presentation, extended abstract , 2009, VALUETOOLS.

[66]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[67]  Jan Larsen,et al.  Estimating human predictability from mobile sensor data , 2010, 2010 IEEE International Workshop on Machine Learning for Signal Processing.

[68]  Thomas Stützle,et al.  Automatic Algorithm Configuration Based on Local Search , 2007, AAAI.

[69]  JäschkeRobert,et al.  The social bookmark and publication management system bibsonomy , 2010, VLDB 2010.

[70]  Fernando Pereira,et al.  Shallow Parsing with Conditional Random Fields , 2003, NAACL.

[71]  Jure Leskovec,et al.  Empirical comparison of algorithms for network community detection , 2010, WWW '10.

[72]  Andy Oram,et al.  Understanding the Linux Kernel, Second Edition , 2002 .

[73]  Rossano Schifanella,et al.  Folks in Folksonomies: social link prediction from shared metadata , 2010, WSDM '10.

[74]  Koen Vanhoof,et al.  Research Challenges in Ubiquitous Knowledge Discovery , 2008, Next Generation of Data Mining.

[75]  Juan A. Almendral,et al.  The network of scientific collaborations within the European framework programme , 2007, 0901.3375.

[76]  Yuri M. Suhov,et al.  Nonparametric Entropy Estimation for Stationary Processesand Random Fields, with Applications to English Text , 1998, IEEE Trans. Inf. Theory.

[77]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.

[78]  Wolfgang Nejdl,et al.  Evaluating Personal Information Management Using an Activity Logs Enriched Desktop Dataset , 2008 .

[79]  Aoying Zhou,et al.  Density-Based Clustering over an Evolving Data Stream with Noise , 2006, SDM.

[80]  Daniel Gatica-Perez,et al.  Discovering human routines from cell phone data with topic models , 2008, 2008 12th IEEE International Symposium on Wearable Computers.

[81]  Mohan Tanniru,et al.  An Agent-Based Approach to Study Virtual Learning Communities , 2005, Proceedings of the 38th Annual Hawaii International Conference on System Sciences.

[82]  Ioannis G. Nikolakopoulos,et al.  An evaluation study of clustering algorithms in the scope of user communities assessment , 2009, Comput. Math. Appl..

[83]  L. Jacobs,et al.  The Impact of Political Debate on Government Trust: Reminding the Public What the Federal Government Does , 1999 .

[84]  Divesh Srivastava,et al.  Finding Hierarchical Heavy Hitters in Data Streams , 2003, VLDB.

[85]  Wolfgang Schröder-Preikschat,et al.  Dynamic AspectC++: Generic Advice at Any Time , 2009, SoMeT.

[86]  Johannes Gehrke,et al.  Mining data streams under block evolution , 2002, SKDD.

[87]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[88]  Longbing Cao,et al.  Agent Mining: The Synergy of Agents and Data Mining , 2009, IEEE Intelligent Systems.

[90]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[91]  Abraham Silberschatz,et al.  Operating System Concepts Essentials , 2010 .

[92]  Rob J Hyndman,et al.  Another look at measures of forecast accuracy , 2006 .

[93]  Jennifer Widom,et al.  Models and issues in data stream systems , 2002, PODS.

[94]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[95]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[96]  Jure Leskovec,et al.  Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters , 2008, Internet Math..

[97]  Panayiotis Zaphiris,et al.  Age differences in online social networking - A study of user profiles and the social capital divide among teenagers and older users in MySpace , 2009, Comput. Hum. Behav..

[98]  Nicole B. Ellison,et al.  Managing Impressions Online: Self-Presentation Processes in the Online Dating Environment , 2006, J. Comput. Mediat. Commun..

[99]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[100]  Said Kashoob,et al.  Community-based ranking of the social web , 2010, HT '10.

[101]  Jingjing Lu,et al.  Comparing naive Bayes, decision trees, and SVM with AUC and accuracy , 2003, Third IEEE International Conference on Data Mining.

[102]  Mike Thelwall,et al.  Data mining emotion in social network communication: Gender differences in MySpace , 2010, J. Assoc. Inf. Sci. Technol..

[103]  Abraham Silberschatz,et al.  Operating System Concepts , 1983 .

[104]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[105]  Alex Pentland,et al.  Reality mining: sensing complex social systems , 2006, Personal and Ubiquitous Computing.

[106]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[107]  Stefan Siersdorfer,et al.  Social recommender systems for web 2.0 folksonomies , 2009, HT '09.

[108]  Kotagiri Ramamohanarao,et al.  Conditional Random Fields for Intrusion Detection , 2007, 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07).

[109]  Divesh Srivastava,et al.  Diamond in the rough: finding Hierarchical Heavy Hitters in multi-dimensional data , 2004, SIGMOD '04.

[110]  Gregory F. Cooper,et al.  A Bayesian Method for Constructing Bayesian Belief Networks from Databases , 1991, UAI.

[111]  Rivka Oxman,et al.  Precedents in design: a computational model for the organization of precedent knowledge , 1994 .

[112]  Julio Cesar Sampaio do Prado Leite,et al.  Comparing GORE Frameworks: i-star and KAOS , 2009, WER.

[113]  Rajeev Motwani,et al.  Maintaining variance and k-medians over data stream windows , 2003, PODS.

[114]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[115]  Yun Gao,et al.  Estimating the Entropy of Binary Time Series: Methodology, Some Theory and a Simulation Study , 2008, Entropy.

[116]  Krishna P. Gummadi,et al.  Measurement and analysis of online social networks , 2007, IMC '07.

[117]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[118]  E A Leicht,et al.  Community structure in directed networks. , 2007, Physical review letters.

[119]  Wray L. Buntine A Guide to the Literature on Learning Probabilistic Networks from Data , 1996, IEEE Trans. Knowl. Data Eng..

[120]  Ciro Cattuto,et al.  Semantics, Sensors, and the Social Web: The Live Social Semantics Experiments , 2010, ESWC.

[121]  Mohamed Medhat Gaber,et al.  Mobile Data Mining for Intelligent Healthcare Support , 2009, 2009 42nd Hawaii International Conference on System Sciences.

[122]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[123]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[124]  Donato Malerba,et al.  Summarization for Geographically Distributed Data Streams , 2010, KES.

[125]  Mark W. Schmidt,et al.  Accelerated training of conditional random fields with stochastic gradient methods , 2006, ICML.

[126]  Biplav Srivastava,et al.  Domain-Dependent Parameter Selection of Search-based Algorithms Compatible with User Performance Criteria , 2005, AAAI.

[127]  Vili Podgorelec,et al.  Decision trees , 2018, Encyclopedia of Database Systems.

[128]  Alan R. Hevner,et al.  Design Science in Information Systems Research , 2004, MIS Q..

[129]  Slava Kisilevich,et al.  Analysis of privacy in online social networks of runet , 2010, SIN.

[130]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[131]  Philip S. Yu,et al.  Density-based clustering of data streams at multiple resolutions , 2009, TKDD.

[132]  Shaomin Mu,et al.  Sequence-similarity kernels for SVMs to detect anomalies in system calls , 2007, Neurocomputing.

[133]  M. Newman,et al.  Why social networks are different from other types of networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[134]  Eric S. K. Yu,et al.  A Qualitative, Interactive Evaluation Procedure for Goal- and Agent-Oriented Models , 2009, CAiSE Forum.

[135]  Dimitrios Gunopulos,et al.  On-Line Discovery of Dense Areas in Spatio-temporal Databases , 2003, SSTD.

[136]  Steve Jones,et al.  U.S. College Students' Internet Use: Race, Gender and Digital Divides , 2009, J. Comput. Mediat. Commun..

[137]  Eric S. K. Yu,et al.  Social Modeling and i* , 2009, Conceptual Modeling: Foundations and Applications.

[138]  Sarah Pedersen,et al.  Gender Differences in British Blogging , 2007, J. Comput. Mediat. Commun..

[139]  Frank Harary,et al.  Graph Theory , 2016 .

[140]  Anabel Quan-Haase,et al.  Information revelation and internet privacy concerns on social network sites: a case study of facebook , 2009, C&T.

[141]  R. McCrae,et al.  The Geographic Distribution of Big Five Personality Traits , 2007 .

[142]  James A. Landay,et al.  The Mobile Sensing Platform: An Embedded Activity Recognition System , 2008, IEEE Pervasive Computing.

[143]  Douglas G. Altman,et al.  Practical statistics for medical research , 1990 .

[144]  Robert P. Goldman,et al.  A Semantics for Probabilistic Quantifier-Free First-Order Languages, with Particular Application to Story Understanding , 1989, IJCAI.

[145]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[146]  C. Caldwell Mathematics of Computation , 1999 .

[147]  Andrew McCallum,et al.  An Introduction to Conditional Random Fields for Relational Learning , 2007 .

[148]  Panos Kalnis,et al.  On Discovering Moving Clusters in Spatio-temporal Data , 2005, SSTD.

[149]  Wei Chang,et al.  A stack-based prospective spatio-temporal data analysis approach , 2008, Decis. Support Syst..

[150]  Ricardo A. Baeza-Yates,et al.  Extracting semantic relations from query logs , 2007, KDD '07.

[151]  Philip S. Yu,et al.  A framework for resource-aware knowledge discovery in data streams: a holistic approach with its application to clustering , 2006, SAC '06.

[152]  Marco Cesati,et al.  Understanding the Linux Kernel, Third Edition , 2005 .

[153]  Li Tu,et al.  Density-based clustering for real-time stream data , 2007, KDD '07.

[154]  James A. Landay,et al.  MyExperience: a system for in situ tracing and capturing of user feedback on mobile phones , 2007, MobiSys '07.

[155]  Dominik Benz,et al.  The social bookmark and publication management system bibsonomy , 2010, The VLDB Journal.

[156]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[157]  David Roberts,et al.  MobSens: Making Smart Phones Smarter , 2009, IEEE Pervasive Computing.

[158]  S. R. Subramanya,et al.  Enhancing the User Experience in Mobile Phones , 2007, Computer.

[159]  Sudipto Guha,et al.  Clustering Data Streams , 2000, FOCS.

[160]  M. Lynne Markus,et al.  Toward A Theory of Knowledge Reuse : Types of Knowledge Reuse Situations and Factors in Reuse Success , 2022 .

[161]  Eric Yu,et al.  A Goal-Oriented Representation of Service-Oriented Software Design Principles , 2011 .

[162]  Nicol N. Schraudolph,et al.  Conjugate Directions for Stochastic Gradient Descent , 2002, ICANN.

[163]  Chuanyi Ji,et al.  Proactive network fault detection , 1997, Proceedings of INFOCOM '97.

[164]  Eric S. K. Yu,et al.  Modeling social media support for the elicitation of citizen opinion , 2010, MSM '10.

[165]  Dino Pedreschi,et al.  Time-focused clustering of trajectories of moving objects , 2006, Journal of Intelligent Information Systems.

[166]  Peter Brusilovsky,et al.  From adaptive hypermedia to the adaptive web , 2002, CACM.

[167]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[168]  Simon Günter,et al.  A Stochastic Quasi-Newton Method for Online Convex Optimization , 2007, AISTATS.