A new family of tight sets in $${\mathcal {Q}}^{+}(5,q)$$Q+(5,q)

In this paper, we describe a new infinite family of $$\frac{q^{2}-1}{2}$$q2-12-tight sets in the hyperbolic quadrics $${\mathcal {Q}}^{+}(5,q)$$Q+(5,q), for $$q \equiv 5 \text{ or } 9 \,\hbox {mod}\,{12}$$q≡5or9mod12. Under the Klein correspondence, these correspond to Cameron–Liebler line classes of $$\mathop {\mathrm{PG}}(3,q)$$PG(3,q) having parameter $$\frac{q^{2}-1}{2}$$q2-12. This is the second known infinite family of nontrivial Cameron–Liebler line classes, the first family having been described by Bruen and Drudge with parameter $$\frac{q^{2}+1}{2}$$q2+12 in $$\mathop {\mathrm{PG}}(3,q)$$PG(3,q) for all odd $$q$$q. The study of Cameron–Liebler line classes is closely related to the study of symmetric tactical decompositions of $$\mathop {\mathrm{PG}}(3,q)$$PG(3,q) (those having the same number of point classes as line classes). We show that our new examples occur as line classes in such a tactical decomposition when $$q \equiv 9 \,\hbox {mod}\,12$$q≡9mod12 (so $$q = 3^{2e}$$q=32e for some positive integer $$e$$e), providing an infinite family of counterexamples to a conjecture made by Cameron and Liebler (in Linear Algebra Appl 46, 91–102, 1982); the nature of these decompositions allows us to also prove the existence of a set of type $$\left( \frac{1}{2}(3^{2e}-3^{e}), \frac{1}{2}(3^{2e}+3^{e}) \right) $$12(32e-3e),12(32e+3e) in the affine plane $$\mathop {\mathrm{AG}}(2,3^{2e})$$AG(2,32e) for all positive integers $$e$$e. This proves a conjecture made by Rodgers in his Ph.D. thesis.

[1]  Klaus Metsch,et al.  The non‐existence of Cameron–Liebler line classes with parameter 2 < x ⩽ q , 2010 .

[2]  K. Williams,et al.  Gauss and Jacobi sums , 2021, Mathematical Surveys and Monographs.

[3]  Jan De Beule,et al.  Tight sets, weighted m-covers, weighted m-ovoids, and minihypers , 2009, Des. Codes Cryptogr..

[4]  Klaus Metsch,et al.  Small tight sets of hyperbolic quadrics , 2013, Des. Codes Cryptogr..

[5]  Tim Penttila,et al.  Overgroups of Cyclic Sylow Subgroups of Linear Groups , 2008 .

[6]  Peter J. Cameron,et al.  Tactical decompositions and orbits of projective groups , 1982 .

[7]  Leo Storme,et al.  A non‐existence result on Cameron–Liebler line classes , 2008 .

[8]  Tim Penttila,et al.  Sets of type (m, n) in the affine and projective planes of order nine , 1995, Des. Codes Cryptogr..

[9]  Rudolf Lide,et al.  Finite fields , 1983 .

[10]  Tim Penttila,et al.  Cameron-Liebler line classes in PG(3, 4) , 2006 .

[11]  Klaus Metsch An improved bound on the existence of Cameron-Liebler line classes , 2014, J. Comb. Theory, Ser. A.

[12]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[13]  Morgan J. Rodgers ON SOME NEW EXAMPLES OF CAMERON-LIEBLER LINE CLASSES , 2012 .

[14]  John Bamberg,et al.  Tight sets and m-ovoids of finite polar spaces , 2007, J. Comb. Theory, Ser. A.

[15]  Klaus Metsch,et al.  A modular equality for Cameron-Liebler line classes , 2014, J. Comb. Theory, Ser. A.

[16]  Koji Momihara,et al.  Cameron-Liebler line classes with parameter $x=\frac{q^2-1}{2}$ , 2014, 2006.14206.

[17]  Keldon Drudge,et al.  On a Conjecture of Cameron and Liebler , 1999, Eur. J. Comb..

[18]  Harald Niederreiter,et al.  Finite fields: Author Index , 1996 .

[19]  G. Tee Eigenvectors of block circulant and alternating circulant matrices , 2005 .

[20]  W. Haemers Interlacing eigenvalues and graphs , 1995 .

[21]  Leo Storme,et al.  On Cameron-Liebler line classes , 2004 .

[22]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[23]  Aiden A. Bruen,et al.  The Construction of Cameron-Liebler Line Classes inPG(3,q) , 1999 .

[24]  Ivan Yu. Mogilnykh,et al.  Cameron–Liebler line classes in $$PG(n,4)$$PG(n,4) , 2014, Des. Codes Cryptogr..

[25]  Tim Penttila,et al.  Cameron-Liebler line classes in PG (3,q) , 1991 .