Strange Nonchaotic Attractors in Evolutionary Processing of Astroinformatic Big Data

In this paper are used evolutionary algorithms on models synthesis, based on real astrophysical data sets. Data used in this paper are from a robotic telescope, Czech Republic, and selected evolutionary algorithms with so-called analytical programming are used to synthesize suitable models that fit measured data. This paper is an extension of our previous research with such difference that so-called strange nonchaotic attractors are used here instead of classical pseudo-random number generators inside used evolutionary algorithms. Results are discussed at the end.

[1]  Michal Pluhacek,et al.  Hidden Periodicity - Chaos Dependance on Numerical Precision , 2013, NOSTRADAMUS.

[2]  Robert Gilmore,et al.  The Topology of Chaos , 2003 .

[3]  Jonas Debosscher,et al.  Automated Classification of variable stars: Application to the OGLE and CoRoT databases. , 2009 .

[4]  Eckehard Schöll,et al.  Handbook of Chaos Control , 2007 .

[5]  L. Alsedà,et al.  On the definition of Strange Nonchaotic Attractor , 2009 .

[6]  F.-J. Zickgraf Kinematical structure of the circumstellar environments of galactic B[e]-type stars , 2003 .

[7]  Ramakrishna Ramaswamy,et al.  Intermittency Route to Strange Nonchaotic Attractors , 1997 .

[8]  Lars Nolle,et al.  Comparison of an self-organizing migration algorithm with simulated annealing and differential evolution for automated waveform tuning , 2005, Adv. Eng. Softw..

[9]  J. Yorke,et al.  Strange attractors that are not chaotic , 1984 .

[10]  Ivan Zelinka,et al.  Boolean symmetry function synthesis by means of arbitrary evolutionary algorithms - comparative study , 2004 .

[11]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[12]  Petr Skoda,et al.  Wavelet Based Feature Extraction for Clustering of Be Stars , 2013, NOSTRADAMUS.

[13]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[14]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[15]  Ivan Zelinka,et al.  CUDA-based Analytic Programming by Means of SOMA Algorithm , 2015, MENDEL.

[16]  Michal Pluhacek,et al.  Do evolutionary algorithms indeed require randomness? , 2013, 2013 IEEE Congress on Evolutionary Computation.

[17]  Jano I. van Hemert,et al.  Adaptive Genetic Programming Applied to New and Existing Simple Regression Problems , 2001, EuroGP.

[18]  Ramakrishna Ramaswamy,et al.  STRANGE NONCHAOTIC ATTRACTORS IN THE QUASIPERIODICALLY FORCED LOGISTIC MAP , 1997, chao-dyn/9711009.

[19]  I. Zelinka,et al.  Synthesis Of Artificial Neural Networks By The Means Of Evolutionary Scanning – Preliminary Study , 2007 .

[20]  I. Zelinka,et al.  ANALYTIC PROGRAMMING – SYMBOLIC REGRESSION BY MEANS OF ARBITRARY EVOLUTIONARY ALGORITHMS , 2005 .

[21]  Roman Senkerik,et al.  Analytical Programming - a Novel Approach for Evolutionary Synthesis of Symbolic Structures , 2011 .

[22]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[23]  Ivan Zelinka,et al.  SOMA—Self-organizing Migrating Algorithm , 2016 .

[24]  Michael O'Neill,et al.  Grammatical Evolution: Evolving Programs for an Arbitrary Language , 1998, EuroGP.

[25]  Michal Pluhacek,et al.  Do Evolutionary Algorithms Indeed Require Random Numbers? Extended Study , 2013, NOSTRADAMUS.

[26]  L. Billard,et al.  Symbolic Regression Analysis , 2002 .

[27]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[28]  Ramakrishna Ramaswamy,et al.  Strange Nonchaotic attractors , 2001, Int. J. Bifurc. Chaos.

[29]  J. Porter,et al.  Classical Be Stars , 2003, 1310.3962.

[30]  Ivan Zelinka,et al.  Evolutionary synthesis of automatic classification on astroinformatic big data , 2017, Int. J. Parallel Emergent Distributed Syst..