On the weak solutions to the equations of a compressible heat conducting gas

We consider the weak solutions to the Euler-Fourier system describing the motion of a compressible heat conducting gas. Employing the method of convex integration, we show that the problem admits infinitely many global-in-time weak solutions for any choice of smooth initial data. We also show that for any initial distribution of the density and temperature, there exists an initial velocity such that the associated initial-value problem possesses infinitely many solutions that conserve the total energy.

[1]  A. Bressan Hyperbolic systems of conservation laws : the one-dimensional Cauchy problem , 2000 .

[2]  C. M. Dafermos,et al.  Hyberbolic [i.e. Hyperbolic] conservation laws in continuum physics , 2005 .

[3]  A. Bressan,et al.  Vanishing Viscosity Solutions of Nonlinear Hyperbolic Systems , 2001, math/0111321.

[4]  P. Lax Hyperbolic systems of conservation laws , 2006 .

[5]  E. Feireisl Relative entropies in thermodynamics of complete fluid systems , 2012 .

[6]  Tai-Ping Liu Admissible solutions of hyperbolic conservation laws , 1981 .

[7]  Weak Solutions of Incompressible Euler Equations , 2003 .

[8]  The structure of dissipative viscous system of conservation laws , 2010 .

[9]  N. Krylov Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms , 2007 .

[10]  Calvin H. Wilcox Sound Propagation in Stratified Fluids , 1984 .

[11]  Camillo De Lellis,et al.  The $h$-principle and the equations of fluid dynamics , 2011, 1111.2700.

[12]  S. Muller,et al.  Convex integration for Lipschitz mappings and counterexamples to regularity , 2003 .

[13]  A. Bressan,et al.  On total differential inclusions , 1994 .

[14]  Local existence for viscous system of conservation laws : H s-data with s > 1 + d / 2 , .

[15]  E. Feireisl,et al.  Weak–Strong Uniqueness Property for the Full Navier–Stokes–Fourier System , 2011, 1111.4256.

[16]  Thomas Alazard,et al.  Low Mach Number Flows and Combustion , 2005, SIAM J. Math. Anal..

[17]  B. Dacorogna,et al.  General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases , 1997 .

[18]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[19]  T. Alazard,et al.  Low Mach Number Limit of the Full Navier-Stokes Equations , 2005, math/0501386.

[20]  E. Feireisl,et al.  Singular Limits in Thermodynamics of Viscous Fluids , 2009 .

[21]  Elisabetta Chiodaroli,et al.  A counterexample to well-posedness of entropy solutions to the compressible Euler system , 2012, 1201.3470.

[22]  Camillo De Lellis,et al.  On Admissibility Criteria for Weak Solutions of the Euler Equations , 2007, 0712.3288.