Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations

We illustrate electroelastic modeling, analysis and simulation solutions, and experimental validation of hybrid piezoelectric (PE) and electromagnetic (EM) energy harvesting from broadband random vibration. For a more practically available ambient source, the more compact expressions of mean power and spectral density (SD) involving dimensionless parameters are derived when the harvester is subjected to random excitation. In the study, it is assumed that the base excitation is white noise. Then, the effect of acceleration SD, load resistance, coupling strength on harvester performances are analyzed by numerical calculation and simulation, and the results are validated by the experimental measurements. It is founded that, only if the load resistance of PE and EM element meet the impedance matching can the hybrid energy harvester output the maximal mean power and spectral density at the resonant frequency, which increases with PE load resistance increasing, but hardly affected by load resistance of EM element; the variation extent of mean power with SD of acceleration increasing varies with the load resistance, and it is up to the maximum under the condition of optimal load; moreover, the stronger the coupling strength is, the wider the frequency band becomes, and the greater the mean power and power spectral density are, while the increasing extent decreases with the coupling strength increasing. Besides, the coupling strength can affect the internal resistance of harvester. Furthermore, with coupling strength increasing, the decreasing degree of mean power falls when the load resistance is greater than the optimal load.

[1]  E. Halvorsen Energy Harvesters Driven by Broadband Random Vibrations , 2008, Journal of Microelectromechanical Systems.

[2]  Lihua Tang,et al.  Analysis of synchronized charge extraction for piezoelectric energy harvesting , 2011 .

[3]  Daniel J. Inman,et al.  Electromechanical Modeling of the Low-Frequency Zigzag Micro-Energy Harvester , 2011 .

[4]  Timothy C. Green,et al.  Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers , 2007 .

[5]  Anantha Chandrakasan,et al.  An efficient piezoelectric energy-harvesting interface circuit using a bias-flip rectifier and shared inductor , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[6]  Frank T. Fisher,et al.  A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching , 2009 .

[7]  Joan Ramon Morante,et al.  Vibrational energy scavenging with Si technology electromagnetic inertial microgenerators , 2007 .

[8]  Shuo Cheng,et al.  Modeling of magnetic vibrational energy harvesters using equivalent circuit representations , 2007 .

[9]  C. Richards,et al.  Optimization of electromechanical coupling for a thin-film PZT membrane: II. Experiment , 2005 .

[10]  S. Shokat,et al.  電界応答性キトサン-ポリ(N,N-ジメチルアクリルアミド)セミIPNゲル膜およびそれらの誘電,熱および膨潤キャラクタリゼーション , 2013 .

[11]  Kwok Hung Li,et al.  A study of piezoelectric harvesters for low-level vibrations in wireless sensor networks , 2013 .

[12]  Einar Halvorsen,et al.  Piezoelectric MEMS energy harvesting systems driven by harmonic and random vibrations , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[13]  L. Zuo,et al.  Vibration energy harvesting from random force and motion excitations , 2012 .

[14]  Daniel J. Inman,et al.  Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters , 2012 .

[15]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[16]  Chengkuo Lee,et al.  A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibrations , 2011 .

[17]  Shuo Cheng,et al.  The role of coupling strength in the performance of electrodynamic vibrational energy harvesters , 2013 .

[18]  Daniel J. Inman,et al.  Mechanical effect of combined piezoelectric and electromagnetic energy harvesting , 2011 .

[19]  Jae Wan Kwon,et al.  A micromachined energy harvester from a keyboard using combined electromagnetic and piezoelectric conversion , 2008 .

[20]  P. D. Mitcheson,et al.  Power-Extraction Circuits for Piezoelectric Energy Harvesters in Miniature and Low-Power Applications , 2012, IEEE Transactions on Power Electronics.

[21]  Daniel J. Inman,et al.  Piezoelectric energy harvesting from broadband random vibrations , 2009 .

[22]  Y. Manoli,et al.  Electromagnetic Vibration Energy Harvesting Devices: Architectures, Design, Modeling and Optimization , 2012 .

[23]  R. B. Yates,et al.  Analysis Of A Micro-electric Generator For Microsystems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[24]  Kevin A. Snook,et al.  縦方向電界場中で曲げたPIN-PMN-PT単結晶の強度 , 2011 .

[25]  Chengkuo Lee,et al.  A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz , 2012 .

[26]  Yi-Chung Shu,et al.  Analysis of power output for piezoelectric energy harvesting systems , 2006 .

[27]  Ryan L. Harne,et al.  A review of the recent research on vibration energy harvesting via bistable systems , 2013 .

[28]  Marco Ferrari,et al.  Piezoelectric buckled beams for random vibration energy harvesting , 2012 .

[29]  Daniel J. Inman,et al.  A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters , 2008 .

[30]  Mickaël Lallart,et al.  Recent Progress in Piezoelectric Conversion and Energy Harvesting Using Nonlinear Electronic Interfaces and Issues in Small Scale Implementation , 2011, Micromachines.

[31]  Adrien Badel,et al.  Energy harvesting using piezoelectric materials: Case of random vibrations , 2007 .

[32]  Balasubramaniam Natarajan,et al.  A structured approach to optimization of energy harvesting wireless sensor networks , 2013, 2013 IEEE 10th Consumer Communications and Networking Conference (CCNC).

[33]  Armaghan Salehian,et al.  Analysis and Modelling towards Hybrid Piezo‐Electromagnetic Vibrating Energy Harvesting Devices , 2011 .

[34]  Wen-Jong Wu,et al.  Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers , 2009 .

[35]  Wang Peng,et al.  Design and fabrication of a micro electromagnetic vibration energy harvester , 2011 .

[36]  Brian K. Hatchell,et al.  Experimental Analysis of a Piezoelectric Energy Harvesting System for Harmonic, Random, and Sine on Random Vibration , 2013 .

[37]  Jedol Dayou,et al.  Increasing the output from piezoelectric energy harvester using width-split method with verification , 2013 .

[38]  Sihong Zhao,et al.  Electroelastic modeling and experimental validations of piezoelectric energy harvesting from broadband random vibrations of cantilevered bimorphs , 2012 .

[39]  J. Doob Stochastic processes , 1953 .

[40]  Sundman Bo.,et al.  エレクトロウェッティングディスプレイの油脱ぬれパターンの観測と光学的意味 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2008 .

[41]  Yang Xu,et al.  Modeling, design and optimization of hybrid electromagnetic and piezoelectric MEMS energy scavengers , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[42]  Chengkuo Lee,et al.  Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms , 2010 .

[43]  Daniel J. Inman,et al.  Piezoelectric Energy Harvesting , 2011 .

[44]  Hakan Urey,et al.  FR4-based electromagnetic energy harvester for wireless sensor nodes , 2010 .

[45]  Steve G Burrow,et al.  Technological challenges of developing wireless health and usage monitoring systems , 2013, Smart Structures.

[46]  Yonas Tadesse,et al.  Multimodal Energy Harvesting System: Piezoelectric and Electromagnetic , 2009 .