Machine Learning for Constraint Programming

It is well established that designing good heuristics for solving Constraint Programming models requires years of domain experience and a huge amount of trial and error. In this thesis project, we ...

[1]  Yuri Malitsky,et al.  Deep Learning for Algorithm Portfolios , 2016, AAAI.

[2]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[3]  Marek Wojciechowski,et al.  Dataset Filtering Techniques in Constraint-Based Frequent Pattern Mining , 2002, Pattern Detection and Discovery.

[4]  Eugene C. Freuder,et al.  Inference-Based Constraint Satisfaction Supports Explanation , 1996, AAAI/IAAI, Vol. 1.

[5]  Ravi Sethi,et al.  The Complexity of Flowshop and Jobshop Scheduling , 1976, Math. Oper. Res..

[6]  Lars Kotthoff,et al.  Machine learning for constraint solver design -- A case study for the alldifferent constraint , 2010, ArXiv.

[7]  Maurizio Gabbrielli,et al.  An Extensive Evaluation of Portfolio Approaches for Constraint Satisfaction Problems , 2016, Int. J. Interact. Multim. Artif. Intell..

[8]  Luca Maria Gambardella,et al.  A survey on metaheuristics for stochastic combinatorial optimization , 2009, Natural Computing.

[9]  Emmanuel Hebrard,et al.  Solving Variants of the Job Shop Scheduling Problem Through Conflict-Directed Search , 2015, INFORMS J. Comput..

[10]  Teofilo F. Gonzalez,et al.  Flowshop and Jobshop Schedules: Complexity and Approximation , 1978, Oper. Res..

[11]  Michele Lombardi,et al.  Embedding Decision Trees and Random Forests in Constraint Programming , 2015, CPAIOR.

[12]  Eugene C. Freuder,et al.  Automated Formulation of Constraint Satisfaction Problems , 1996, AAAI/IAAI, Vol. 2.

[13]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[14]  Srikanth Kandula,et al.  Resource Management with Deep Reinforcement Learning , 2016, HotNets.

[15]  Frank Neumann,et al.  Feature-based algorithm selection for constrained continuous optimisation , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[16]  J. K. Lenstra,et al.  Computational complexity of discrete optimization problems , 1977 .

[17]  Jean-François Puget,et al.  Constraint Programming Next Challenge: Simplicity of Use , 2004, CP.

[18]  Luc De Raedt,et al.  Constraint Programming meets Machine Learning and Data Mining (Dagstuhl Seminar 11201) , 2011, Dagstuhl Reports.

[20]  Bart Selman,et al.  Algorithm portfolios , 2001, Artif. Intell..

[21]  Wei Wang,et al.  Edge Caching at Base Stations With Device-to-Device Offloading , 2017, IEEE Access.

[22]  Hamid Khodabandehlou,et al.  Training Recurrent Neural Networks as a Constraint Satisfaction Problem , 2018, ArXiv.

[23]  Florian Richoux,et al.  Constrained optimization under uncertainty for decision-making problems: Application to Real-Time Strategy games , 2019, 2019 IEEE Congress on Evolutionary Computation (CEC).

[24]  Kevin Leyton-Brown,et al.  Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms , 2006, CP.

[25]  Narendra Jussien,et al.  User-friendly explanations for constraint programming , 2001, WLPE.

[26]  Tad Hogg,et al.  An Economics Approach to Hard Computational Problems , 1997, Science.

[27]  Lakhdar Sais,et al.  The Top-k Frequent Closed Itemset Mining Using Top-k SAT Problem , 2013, ECML/PKDD.

[28]  Fariborz Jolai,et al.  Optimizing the sum of maximum earliness and tardiness of the job shop scheduling problem , 2017, Comput. Ind. Eng..

[29]  Paola Mello,et al.  Model Agnostic Solution of CSPs via Deep Learning: A Preliminary Study , 2018, CPAIOR.

[30]  Lakhdar Sais,et al.  On Maximal Frequent Itemsets Mining with Constraints , 2018, CP.

[31]  Kevin Tierney,et al.  Deep Learning Assisted Heuristic Tree Search for the Container Pre-marshalling Problem , 2017, Comput. Oper. Res..

[32]  Kevin Leyton-Brown,et al.  Algorithm runtime prediction: Methods & evaluation , 2012, Artif. Intell..

[33]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[34]  Eugene L. Lawler,et al.  Sequencing and scheduling: algorithms and complexity , 1989 .

[35]  Dmitry Malioutov,et al.  MLIC: A MaxSAT-Based Framework for Learning Interpretable Classification Rules , 2018, CP.

[36]  Toby Walsh,et al.  Handbook of Constraint Programming (Foundations of Artificial Intelligence) , 2006 .

[37]  Michele Lombardi,et al.  A New Propagator for Two-Layer Neural Networks in Empirical Model Learning , 2013, CP.

[38]  Peter J. Stuckey,et al.  MiniZinc: Towards a Standard CP Modelling Language , 2007, CP.

[39]  Pierre Flener,et al.  A constraint-based local search backend for MiniZinc , 2015, Constraints.

[40]  Eugene C. Freuder,et al.  Deriving Explanations and Implications for Constraint Satisfaction Problems , 2001, CP.

[41]  Lars Kotthoff,et al.  Algorithm Selection for Combinatorial Search Problems: A Survey , 2012, AI Mag..

[42]  Symeon Chatzinotas,et al.  A deep learning approach for optimizing content delivering in cache-enabled HetNet , 2017, 2017 International Symposium on Wireless Communication Systems (ISWCS).

[43]  Jacob Feldman,et al.  Representing and Solving Rule-Based Decision Models with Constraint Solvers , 2011, RuleML America.

[44]  Yang-Kuei Lin,et al.  Scheduling efficiency on correlated parallel machine scheduling problems , 2018, Oper. Res..

[45]  Paolo Torroni,et al.  Constraint Detection in Natural Language Problem Descriptions , 2016, IJCAI.

[46]  Eugene C. Freuder Progress towards the Holy Grail , 2017, Constraints.

[47]  Wei Zhang,et al.  A Reinforcement Learning Approach to job-shop Scheduling , 1995, IJCAI.