McEliece Public Key Cryptosystems Using Algebraic-Geometric Codes

McEliece proposed a public-key cryptosystem based on algebraic codes, in particular binary classical Goppa codes. Actually, his scheme needs only a class of codes with a good decoding algorithm and with a huge number of inequivalent members with given parameters. In the present paper we look at various aspects of McEliece's scheme using the new and much larger class of R-ary algebraic-geometric Goppa codes.

[1]  J. K. Gibson,et al.  Equivalent Goppa Codes and Trapdoors to McEliece's Public Key Cryptosystem , 1991, EUROCRYPT.

[2]  Ruud Pellikaan,et al.  ALGEBRAIC CURVES OVER FINITE FIELDS: (Cambridge Tracts in Mathematics 97) , 1992 .

[3]  Nicholas J. Patterson,et al.  The algebraic decoding of Goppa codes , 1975, IEEE Trans. Inf. Theory.

[4]  Dirk Ehrhard,et al.  Achieving the designed error capacity in decoding algebraic-geometric codes , 1993, IEEE Trans. Inf. Theory.

[5]  Valery I. Korzhik,et al.  Cryptanalysis of McEliece's Public-Key Cryptosystem , 1991, EUROCRYPT.

[6]  Robert J. McEliece,et al.  A public key cryptosystem based on algebraic coding theory , 1978 .

[7]  Ernest F. Brickell,et al.  An Observation on the Security of McEliece's Public-Key Cryptosystem , 1988, EUROCRYPT.

[8]  Masao Kasahara,et al.  Further results on Goppa codes and their applications to constructing efficient binary codes , 1976, IEEE Trans. Inf. Theory.

[9]  Tom Høholdt,et al.  A Fast Decoding Method of AG Codes from Miura-Kamiya Curves Cab up to Half the Feng-Rao Bound , 1995 .

[10]  O. Moreno,et al.  A Computer Algebra Algorithm for the Adjoint Divisor , 1993, Proceedings. IEEE International Symposium on Information Theory.

[11]  Ruud Pellikaan,et al.  On a decoding algorithm for codes on maximal curves , 1989, IEEE Trans. Inf. Theory.

[12]  Thomas Beth,et al.  Public-Key Cryptography: State of the Art and Future Directions , 1992, Lecture Notes in Computer Science.

[13]  A.N. Skorobogatov,et al.  On the decoding of algebraic-geometric codes , 1990, IEEE Trans. Inf. Theory.

[14]  Gustavus J. Simmons,et al.  Contemporary Cryptology: The Science of Information Integrity , 1994 .

[15]  C. S. Park Improving code rate of McEliece's public-key cryptosystem , 1989 .

[16]  T. R. N. Rao,et al.  Private-key algebraic-code encryptions , 1989, IEEE Trans. Inf. Theory.

[17]  Iwan M. Duursma,et al.  Majority coset decoding , 1993, IEEE Trans. Inf. Theory.

[18]  Dorothy E. Denning,et al.  Cryptography and Data Security , 1982 .

[19]  V. Sidelnikov,et al.  On insecurity of cryptosystems based on generalized Reed-Solomon codes , 1992 .

[20]  D. Le Brigand,et al.  Algorithme de Brill-Noether et codes de Goppa , 1988 .

[21]  Victor K.-W. Wei,et al.  Simplified understanding and efficient decoding of a class of algebraic-geometric codes , 1994, IEEE Trans. Inf. Theory.

[22]  Ruud Pellikaan,et al.  Decoding geometric Goppa codes using an extra place , 1992, IEEE Trans. Inf. Theory.

[23]  T. R. N. Rao,et al.  Decoding algebraic-geometric codes up to the designed minimum distance , 1993, IEEE Trans. Inf. Theory.

[24]  Serge G. Vladut,et al.  On the decoding of algebraic-geometric codes over Fq for q>=16 , 1990, IEEE Trans. Inf. Theory.

[25]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[26]  Michael Wirtz,et al.  On the parameters of Goppa codes , 1988, IEEE Trans. Inf. Theory.

[27]  Henk Meijer,et al.  Security-related comments regarding McEliece's public-key cryptosystem , 1987, IEEE Trans. Inf. Theory.

[28]  Jean-Pierre Serre,et al.  Nombres de points des courbes algébriques sur F ... , 1983 .

[29]  J. Wolfmann The number of points on certain algebraic curves over finite fields , 1989 .

[30]  Tom Høholdt,et al.  Construction and decoding of a class of algebraic geometry codes , 1989, IEEE Trans. Inf. Theory.

[31]  Thomas Beth,et al.  Public-Key Cryptography State , 1992 .

[32]  Iwan M. Duursma Algebraic decoding using special divisors , 1993, IEEE Trans. Inf. Theory.

[33]  Tom Høholdt,et al.  Fast decoding of codes from algebraic plane curves , 1992, IEEE Trans. Inf. Theory.

[34]  Johan van Tilburg,et al.  On the McEliece Public-Key Cryptosystem , 1988, CRYPTO.

[35]  S. G. Vladut,et al.  Algebraic-Geometric Codes , 1991 .