Reconfiguration du dispositif de commande d’une éolienne en cas de creux de tension

Avec le developpement de l’eolien, les prescriptions techniques de raccordement de cette technologie obligeront le maintient de sa connexion lors d’incidents sur la tension du reseau electrique. L’enjeu pour le gestionnaire du reseau est de pouvoir utiliser tous les generateurs pour garantir la stabilite du systeme electrique.A partir d’un modele dynamique d’une eolienne a base de Machine Asynchrone a Double Alimentation (MADA), une commande vectorielle amelioree a ete proposee en prenant en compte la dynamique du flux statorique engendree par la chute de tension. Les performances superieures en terme de maintient de la production ont ete etablies par comparaison avec la methode de commande classique. Son domaine d’utilisation a ete egalement determine.Pendant les creux de tension importants, une protection materielle (crowbar) est implementee avec un controle de la demagnetisation de la MADA. En outre, de la puissance reactive peut etre produite a la fois par la MADA et par le convertisseur connecte au reseau electrique au cours de la defaillance du reseau.Un controle vectoriel a hysteresis des courants pour les deux convertisseurs electroniques multiniveaux est propose et evalue pour ameliorer la reponse dynamique de ces convertisseurs et pour reduire les effets des variations des parametres sur les performances de la commande. Selon la duree du defaut, des objectifs differents de controle doivent etre realises en priorite pour empecher des surintensites rotoriques et pour fournir de la puissance reactive. Une reconfiguration complete du dispositif de commande de cette eolienne est detaillee pour renforcer le maintient de la production eolienne lors de defaillances

[1]  Xavier Guillaud,et al.  Power strategies for maximum control structure of a wind energy conversion system with a synchronous machine , 2005 .

[2]  Poul Ejnar Sørensen,et al.  Co-ordinated voltage control of DFIG wind turbines in uninterrupted operation during grid faults , 2007 .

[3]  Dushan Boroyevich,et al.  A comprehensive study of neutral-point voltage balancing problem in three-level neutral-point-clamped voltage source PWM inverters , 2000 .

[4]  Marian P. Kazmierkowski,et al.  Current control techniques for three-phase voltage-source PWM converters: a survey , 1998, IEEE Trans. Ind. Electron..

[5]  Fang Zheng Peng,et al.  Multilevel inverters: a survey of topologies, controls, and applications , 2002, IEEE Trans. Ind. Electron..

[6]  É. Semail,et al.  Modeling and Control of a Three-Phase Neutral-Point-Clamped Inverter by Means of a Direct Space Vector Control of Line to Line Voltages , 2002 .

[7]  Peng Li,et al.  Formalisme pour la supervision des systèmes hybrides multi-sources de générateurs d’énergie répartie : application à la gestion d’un micro réseau , 2009 .

[8]  Olimpo Anaya-Lara,et al.  Rotor flux magnitude and angle control strategy for doubly fed induction generators , 2006 .

[9]  Nick Jenkins,et al.  Comparison of 5th order and 3rd order machine models for doubly fed induction generator (DFIG) wind turbines , 2003 .

[10]  A. Dittrich,et al.  Doubly-fed induction machine as generator in wind power plant: nonlinear control algorithms with direct decoupling , 2005, 2005 European Conference on Power Electronics and Applications.

[11]  B. François,et al.  Formalisme de modélisation et de synthèse des commandes appliqué aux convertisseurs statiques à structure matricielle , 1996 .

[12]  F. Blaabjerg,et al.  Power electronics as efficient interface in dispersed power generation systems , 2004, IEEE Transactions on Power Electronics.

[13]  Stefan Lundberg,et al.  A DFIG wind turbine ride‐through system. Influence on the energy production , 2004 .

[14]  Math Bollen,et al.  Voltage dips at the terminals of wind power installations , 2005 .

[15]  A. Dittrich,et al.  Comparison of fault ride-through strategies for wind turbines with DFIM generators , 2005, 2005 European Conference on Power Electronics and Applications.

[16]  E.M. Berkouk,et al.  DC-link voltage balancing algorithm using a space-vector hysteresis current control for three-level VSI applied for wind conversion system , 2007, 2007 European Conference on Power Electronics and Applications.

[17]  Narayan C. Kar,et al.  Effects of main and leakage flux saturation on the transient performances of doubly-fed wind driven induction generator , 2007 .

[18]  Henry Shu-Hung Chung,et al.  Constant-frequency hysteresis current control of grid-connected VSI without bandwidth control , 2009 .

[19]  J. Morren,et al.  Ridethrough of wind turbines with doubly-fed induction generator during a voltage dip , 2005, IEEE Transactions on Energy Conversion.

[20]  N. Mohan,et al.  A novel robust low voltage and fault ride through for wind turbine application operating in weak grids , 2005, 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005..

[21]  Leopoldo García Franquelo,et al.  Modeling Strategy for Back-to-Back Three-Level Converters Applied to High-Power Wind Turbines , 2006, IEEE Transactions on Industrial Electronics.

[22]  Yongdong Li,et al.  Modeling and control of doubly fed induction generator wind turbines by using Causal Ordering Graph during voltage dips , 2008, 2008 International Conference on Electrical Machines and Systems.

[23]  G. Strbac,et al.  Trends in wind power technology and grid code requirements , 2007, 2007 International Conference on Industrial and Information Systems.

[24]  G. Joos,et al.  Supercapacitor Energy Storage for Wind Energy Applications , 2007, IEEE Transactions on Industry Applications.

[25]  Yongdong Li,et al.  Dynamic behavior of doubly fed induction generator wind turbines under three-phase voltage dips , 2009, 2009 IEEE 6th International Power Electronics and Motion Control Conference.

[26]  U. Drofenik,et al.  A novel hysteresis current control for three-phase three-level PWM rectifiers , 2005, Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005..

[27]  Xavier Guillaud Sur la modélisation et la commande des redresseurs de courant à interrupteurs bi-commandables , 1992 .

[28]  G. Abad,et al.  Crowbar control algorithms for doubly fed induction generator during voltage dips , 2005, 2005 European Conference on Power Electronics and Applications.

[29]  Marian P. Kazmierkowski,et al.  Control of Three-Level PWM Converter Applied to Variable-Speed-Type Turbines , 2009, IEEE Transactions on Industrial Electronics.

[30]  Peter Tavner,et al.  Control of a doubly fed induction generator in a wind turbine during grid fault ride-through , 2006 .

[31]  J.A.L. Barreiros,et al.  Improving power system dynamic behavior through doubly fed induction machines controlled by static converter using fuzzy control , 2004, IEEE Transactions on Power Systems.

[32]  T. Thiringer,et al.  Evaluation of current control methods for wind turbines using doubly-fed induction machines , 2005, IEEE Transactions on Power Electronics.

[33]  Frede Blaabjerg,et al.  Transient Analysis of Grid-Connected Wind Turbines with DFIG After an External Short-Circuit Fault , 2004 .

[34]  J. Schlabbach Low voltage fault ride through criteria for grid connection of wind turbine generators , 2008, 2008 5th International Conference on the European Electricity Market.

[35]  I. Erlich,et al.  Modeling of Wind Turbines Based on Doubly-Fed Induction Generators for Power System Stability Studies , 2007, IEEE Transactions on Power Systems.

[36]  Bong-Hwan Kwon,et al.  An improved space-vector-based hysteresis current controller , 1998, IEEE Trans. Ind. Electron..

[37]  M. S. Vicatos,et al.  Transient state analysis of a doubly-fed induction generator under three phase short circuit , 1991 .

[38]  He Yikang,et al.  Modeling and control of wind-turbine used DFIG under network fault conditions , 2005, 2005 International Conference on Electrical Machines and Systems.

[39]  R.A.A. de Graaff,et al.  Behavior of AC and DC drives during voltage sags with phase-angle jump and three-phase unbalance , 1999, IEEE Power Engineering Society. 1999 Winter Meeting (Cat. No.99CH36233).

[40]  Poul Ejnar Sørensen,et al.  Mapping of grid faults and grid codes , 2007 .

[41]  Yongdong Li,et al.  Low Voltage Ride-Through of high power DFIG wind turbine using three-level NPC converters , 2009, 2009 35th Annual Conference of IEEE Industrial Electronics.

[42]  Xavier Guillaud,et al.  Modelling, control and simulation of an overall wind energy conversion system , 2003 .

[43]  J.W. Kolar,et al.  Center-Point Voltage Balancing of Hysteresis Current Controlled Three-Level PWM Rectifiers , 2008, IEEE Transactions on Power Electronics.

[44]  R. Bearee,et al.  Control structure synthesis for electromechanical systems based on the concept of inverse model using Causal Ordering Graph , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[45]  G. Venkataramanan,et al.  A Fault Tolerant Doubly Fed Induction Generator Wind Turbine Using a Parallel Grid Side Rectifier and Series Grid Side Converter , 2008, IEEE Transactions on Power Electronics.

[46]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[47]  Ahmed A. El-Sattar,et al.  Dynamic response of doubly fed induction generator variable speed wind turbine under fault , 2008 .

[48]  T. Thiringer,et al.  Comparison between stator-flux and grid-flux-oriented rotor current control of doubly-fed induction generators , 2004, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[49]  Wilsun Xu,et al.  Control design and dynamic performance analysis of a wind turbine-induction generator unit , 2000 .

[50]  El Madjid Berkouk,et al.  A Novel Space-Vector Current Control Based on Circular Hysteresis Areas of a Three-Phase Neutral-Point-Clamped Inverter , 2010, IEEE Transactions on Industrial Electronics.

[51]  Xavier Guillaud,et al.  Energetic Macroscopic Representation and Inversion-Based Control Illustrated on a Wind-Energy-Conversion System Using Hardware-in-the-Loop Simulation , 2009, IEEE Transactions on Industrial Electronics.

[52]  Hui Li,et al.  An Improved Control Strategy of Limiting the DC-Link Voltage Fluctuation for a Doubly Fed Induction Wind Generator , 2008, IEEE Transactions on Power Electronics.

[53]  P. Sanchis,et al.  Dynamic Behavior of the Doubly Fed Induction Generator During Three-Phase Voltage Dips , 2007, IEEE Transactions on Energy Conversion.

[54]  Fang Zheng Peng,et al.  Multilevel converters-a new breed of power converters , 1995, IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting.

[55]  Jonas Persson,et al.  Dynamic Response of Grid-Connected Wind Turbine with Doubly Fed Induction Generator during Disturbances , 2004 .

[56]  J. Niiranen,et al.  Ride-Through Analysis of Doubly Fed Induction Wind-Power Generator Under Unsymmetrical Network Disturbance , 2006, IEEE Transactions on Power Systems.

[57]  Mansour Mohseni,et al.  A space vector-based current controller for doubly fed induction generators , 2009, 2009 35th Annual Conference of IEEE Industrial Electronics.

[58]  Math Bollen Characterisation of voltage sags experienced by three-phase adjustable-speed drives , 1997 .

[59]  A. Bouscayrol,et al.  Inversion-based control of electromechanical systems using causal graphical descriptions , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[60]  Jon Clare,et al.  Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation , 1996 .

[61]  Janaka Ekanayake,et al.  Dynamic modeling of doubly fed induction generator wind turbines , 2003 .

[62]  O. Gomis-Bellmunt,et al.  Ride-Through Control of a Doubly Fed Induction Generator Under Unbalanced Voltage Sags , 2008, IEEE Transactions on Energy Conversion.

[63]  J. Niiranen,et al.  Performance Study of a Doubly Fed Wind-Power Induction Generator Under Network Disturbances , 2006, IEEE Transactions on Energy Conversion.

[64]  R. W. De Doncker,et al.  Doubly fed induction generator systems for wind turbines , 2002 .

[65]  Yongdong Li,et al.  Improved Crowbar Control Strategy of DFIG Based Wind Turbines for Grid Fault Ride-Through , 2009, 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition.

[66]  Nicholas Jenkins,et al.  Comparison of fixed speed and doubly-fed induction wind turbines during power system disturbances , 2003 .

[67]  Anca Daniela Hansen,et al.  Fault ride-through capability of DFIG wind turbines , 2007 .

[68]  F.W. Fuchs,et al.  Analysis of three phase grid failure and Doubly Fed Induction Generator ride-through using crowbars , 2007, 2007 European Conference on Power Electronics and Applications.

[69]  G. Joos Wind turbine generator low voltage ride through requirements and solutions , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[70]  Mike Barnes,et al.  Stability of doubly-fed induction generator under stator voltage orientated vector control , 2008 .

[71]  Salma El Aimani Modélisation des différentes technologies d'éoliennes intégrées dans un réseau de moyenne tension , 2004 .

[72]  Jan T. Bialasiewicz,et al.  Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey , 2006, IEEE Transactions on Industrial Electronics.