Estimating the Amount of Information Conveyed by a Population of Neurons

Recent technological advances have made the simultaneous recording of the activity of many neurons common. However, estimating the amount of information conveyed by the discharge of a neural population remains a significant challenge. Here we describe our recently published analysis method that assists in such estimates. We describe the key concepts and assumptions on which the method is based, illustrate its use with data from both simulated and real neurons recorded from the lateral geniculate nucleus of a monkey, and show how it can be used to calculate redundancy and synergy among neuronal groups.

[1]  Ralph A DiCaprio,et al.  Information transfer rate of nonspiking afferent neurons in the crab. , 2004, Journal of neurophysiology.

[2]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[3]  William Bialek,et al.  Entropy and Information in Neural Spike Trains , 1996, cond-mat/9603127.

[4]  Ehud Zohary,et al.  Correlated neuronal discharge rate and its implications for psychophysical performance , 1994, Nature.

[5]  E T Rolls,et al.  Correlations and the encoding of information in the nervous system , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[6]  José María Amigó,et al.  Estimating the Entropy Rate of Spike Trains via Lempel-Ziv Complexity , 2004, Neural Computation.

[7]  Michele Bezzi,et al.  Redundancy and Synergy Arising from Pairwise Correlations in Neuronal Ensembles , 2002, Journal of Computational Neuroscience.

[8]  Robert Haslinger,et al.  The Computational Structure of Spike Trains , 2009, Neural Computation.

[9]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[10]  H. Spitzer,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. , 1987, Journal of neurophysiology.

[11]  R. Shapley,et al.  The origin of the S (slow) potential in the mammalian Lateral Geniculate Nucleus , 1984, Experimental Brain Research.

[12]  R. Quiroga,et al.  Extracting information from neuronal populations : information theory and decoding approaches , 2022 .

[13]  José María Amigó,et al.  Mutual information and redundancy in spontaneous communication between cortical neurons , 2011, Biological Cybernetics.

[14]  Stefano Panzeri,et al.  Data-Robust Tight Lower Bounds to the Information Carried by Spike Times of a Neuronal Population , 2005, Neural Computation.

[15]  Stefano Panzeri,et al.  Information-theoretic methods for studying population codes , 2010, Neural Networks.

[16]  D. Hubel,et al.  Specificity of intrinsic connections in primate primary visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  Marcelo A. Montemurro,et al.  Tight Data-Robust Bounds to Mutual Information Combining Shuffling and Model Selection Techniques , 2007, Neural Computation.

[18]  Jonathan D. Victor,et al.  Metric-space analysis of spike trains: theory, algorithms and application , 1998, q-bio/0309031.

[19]  Maria V. Sanchez-Vives,et al.  Application of Lempel–Ziv complexity to the analysis of neural discharges , 2003, Network.

[20]  Daeyeol Lee,et al.  Effects of noise correlations on information encoding and decoding. , 2006, Journal of neurophysiology.

[21]  Liam Paninski,et al.  Statistical models for neural encoding, decoding, and optimal stimulus design. , 2007, Progress in brain research.

[22]  Aurel A. Lazar,et al.  Information theory in neuroscience , 2011, Journal of Computational Neuroscience.

[23]  Michael J. Berry,et al.  Synergy, Redundancy, and Independence in Population Codes , 2003, The Journal of Neuroscience.

[24]  Lawrence C. Sincich,et al.  Preserving Information in Neural Transmission , 2009, The Journal of Neuroscience.

[25]  M. A. Smith,et al.  The Role of Correlations in Direction and Contrast Coding in the Primary Visual Cortex , 2007, The Journal of Neuroscience.

[26]  P. Latham,et al.  Synergy, Redundancy, and Independence in Population Codes, Revisited , 2005, The Journal of Neuroscience.

[27]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[28]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[29]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[30]  R. Lewand Cryptological Mathematics , 2000 .

[31]  TJ Gawne,et al.  How independent are the messages carried by adjacent inferior temporal cortical neurons? , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  M. Diamond,et al.  Population Coding of Stimulus Location in Rat Somatosensory Cortex , 2001, Neuron.

[33]  James P. Crutchfield,et al.  An Algorithm for Pattern Discovery in Time Series , 2002, ArXiv.

[34]  W. Bair,et al.  Correlated Firing in Macaque Visual Area MT: Time Scales and Relationship to Behavior , 2001, The Journal of Neuroscience.

[35]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[36]  Bruce W. Knight,et al.  Frontiers in Computational Neuroscience Computational Neuroscience Materials and Methods Surgical Preparation , 2022 .

[37]  R W Rodieck,et al.  Retinal ganglion cells: properties, types, genera, pathways and trans-species comparisons. , 1983, Brain, behavior and evolution.

[38]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[39]  Abraham Lempel,et al.  On the Complexity of Finite Sequences , 1976, IEEE Trans. Inf. Theory.

[40]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[42]  Sidarta Ribeiro,et al.  Multielectrode recordings: the next steps , 2002, Current Opinion in Neurobiology.

[43]  Jonathan D Victor,et al.  Approaches to Information-Theoretic Analysis of Neural Activity , 2006, Biological theory.

[44]  R. Reid,et al.  Temporal Coding of Visual Information in the Thalamus , 2000, The Journal of Neuroscience.

[45]  Nikos K Logothetis,et al.  A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings , 2009, BMC Neuroscience.

[46]  L. Optican,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. , 1987, Journal of neurophysiology.

[47]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[48]  Naftali Tishby,et al.  Synergy and Redundancy among Brain Cells of Behaving Monkeys , 1998, NIPS.

[49]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[50]  Peter E. Latham,et al.  Pairwise Maximum Entropy Models for Studying Large Biological Systems: When They Can Work and When They Can't , 2008, PLoS Comput. Biol..

[51]  B J Richmond,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. II. Quantification of response waveform. , 1987, Journal of neurophysiology.

[52]  William Bialek,et al.  Synergy in a Neural Code , 2000, Neural Computation.

[53]  Stefano Panzeri,et al.  A Unified Approach to the Study of Temporal, Correlational, and Rate Coding , 1999, Neural Computation.

[54]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[55]  G. Buzsáki,et al.  Temporal Encoding of Place Sequences by Hippocampal Cell Assemblies , 2006, Neuron.

[56]  S. Panzeri,et al.  An exact method to quantify the information transmitted by different mechanisms of correlational coding. , 2003, Network.

[57]  Michael J. Berry,et al.  Weak pairwise correlations imply strongly correlated network states in a neural population , 2005, Nature.

[58]  Jonathan D Victor,et al.  Analyzing the activity of large populations of neurons: how tractable is the problem? , 2007, Current Opinion in Neurobiology.

[59]  Alexander Borst,et al.  Information theory and neural coding , 1999, Nature Neuroscience.

[60]  Stefano Panzeri,et al.  Correcting for the sampling bias problem in spike train information measures. , 2007, Journal of neurophysiology.

[61]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[62]  Jonathon Shlens,et al.  The Structure of Multi-Neuron Firing Patterns in Primate Retina , 2006, The Journal of Neuroscience.

[63]  R. Kass,et al.  Multiple neural spike train data analysis: state-of-the-art and future challenges , 2004, Nature Neuroscience.