EGARCH models with fat tails, skewness and leverage

An EGARCH model in which the conditional distribution is heavy-tailed and skewed is proposed. The properties of the model, including unconditional moments, autocorrelations and the asymptotic distribution of the maximum likelihood estimator, are set out. Evidence for skewness in a conditional t -distribution is found for a range of returns series, and the model is shown to give a better fit than comparable skewed- t GARCH models in nearly all cases. A two-component model gives further gains in goodness of fit and is able to mimic the long memory pattern displayed in the autocorrelations of the absolute values.

[1]  Genaro Sucarrat betategarch: simulation, estimation and forecasting of first-order Beta-Skew-t-EGARCH models , 2013 .

[2]  Carol Alexander,et al.  Normal Mixture Garch(1,1): Applications to Exchange Rate Modelling , 2004 .

[3]  Campbell R. Harvey,et al.  Conditional Skewness in Asset Pricing Tests , 1999 .

[4]  N. Shephard Stochastic volatility models , 2010 .

[5]  S. Laurent,et al.  Modelling Daily Value-at-Risk Using Realized Volatility and Arch Type Models , 2001 .

[6]  S. Taylor Asset Price Dynamics, Volatility, and Prediction , 2005 .

[7]  T. Bollerslev,et al.  A CONDITIONALLY HETEROSKEDASTIC TIME SERIES MODEL FOR SPECULATIVE PRICES AND RATES OF RETURN , 1987 .

[8]  F. Diebold,et al.  VOLATILITY AND CORRELATION FORECASTING , 2006 .

[9]  Dongming Zhu,et al.  A Generalized Asymmetric Student-t Distribution with Application to Financial Econometrics , 2009 .

[10]  Anders Rahbek,et al.  ASYMPTOTIC INFERENCE FOR NONSTATIONARY GARCH , 2004, Econometric Theory.

[11]  Heleno Bolfarine,et al.  Large-Sample Inference for the Epsilon-Skew-t Distribution , 2007 .

[12]  Prof. Martino Grasselli Stochastic volatility models , 2007 .

[13]  A. I. McLeod,et al.  DIAGNOSTIC CHECKING ARMA TIME SERIES MODELS USING SQUARED‐RESIDUAL AUTOCORRELATIONS , 1983 .

[14]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[15]  M. Steel,et al.  On Bayesian Modelling of Fat Tails and Skewness , 1998 .

[16]  S. Laurent,et al.  Value-at-Risk for long and short trading positions , 2003 .

[17]  Ignacio N. Lobato,et al.  An Automatic Portmanteau Test for Serial Correlation , 2009 .

[18]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[19]  Andrew Harvey,et al.  Exponential Conditional Volatility Models , 2010 .

[20]  A. Brandt The stochastic equation Yn+1=AnYn+Bn with stationary coefficients , 1986 .

[21]  A. Verbyla,et al.  Joint modelling of location and scale parameters of the t distribution , 2004 .

[22]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[23]  Drew D. Creal,et al.  Generalized autoregressive score models with applications ∗ , 2010 .

[24]  Siem Jan Koopman,et al.  A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations , 2010 .

[25]  James B. McDonald,et al.  A Flexible Parametric Garch Model With An Application To Exchange Rates , 2001 .

[26]  G. Box,et al.  The likelihood function of stationary autoregressive-moving average models , 1979 .

[27]  Michael W. Brandt,et al.  Range-Based Estimation of Stochastic Volatility Models , 2001 .

[28]  Drew D. Creal,et al.  Modeling Dynamic Volatilities and Correlations under Skewness and Fat Tails , 2011 .

[29]  Andre Lucas,et al.  Research Unit for Statistical and Empirical Analysis in Social Sciences (hi-stat) Global Coe Hi-stat Discussion Paper Series a General Framework for Observation Driven Time-varying Parameter Models a General Framework for Observation Driven Time-varying Parameter Models * , 2022 .

[30]  Thomas Mikosch,et al.  Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach , 2006 .

[31]  Tsung-I Lin,et al.  A robust approach to joint modeling of mean and scale covariance for longitudinal data , 2009 .

[32]  Eric Zivot,et al.  Practical Issues in the Analysis of Univariate GARCH Models , 2009 .

[33]  Dongming Zhu,et al.  Properties and Estimation of Asymmetric Exponential Power Distribution , 2007 .

[34]  L. Slater,et al.  Confluent Hypergeometric Functions , 1961 .

[35]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[36]  F. Diebold,et al.  Chapter 15 Volatility and Correlation Forecasting , 2006 .