Low storage space for compressive sensing: semi-tensor product approach

[1]  Dongdai Lin,et al.  Stability of multi-valued nonlinear feedback shift registers , 2016, 2016 IEEE International Conference on Information and Automation (ICIA).

[2]  Ran Tao,et al.  Regularized smoothed ℓ0 norm algorithm and its application to CS-based radar imaging , 2016, Signal Process..

[3]  Kun Guo,et al.  Compressive sensing measurement matrix construction based on improved size compatible array LDPC code , 2015, IET Image Process..

[4]  Zhiying Long,et al.  Improved sparse decomposition based on a smoothed L0 norm using a Laplacian kernel to select features from fMRI data , 2015, Journal of Neuroscience Methods.

[5]  Erwin Riegler,et al.  Information-theoretic limits of matrix completion , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[6]  Vibha Tiwari,et al.  Designing sparse sensing matrix for compressive sensing to reconstruct high resolution medical images , 2015 .

[7]  Daniel K Sodickson,et al.  Low‐rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components , 2015, Magnetic resonance in medicine.

[8]  Wotao Yin,et al.  Learning Circulant Sensing Kernels , 2014 .

[9]  D. Lin,et al.  On maximum length nonlinear feedback shift registers using a Boolean network approach , 2014, Proceedings of the 33rd Chinese Control Conference.

[10]  Yongdong Zhang,et al.  Efficient Parallel Framework for HEVC Motion Estimation on Many-Core Processors , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[11]  Yongdong Zhang,et al.  A Highly Parallel Framework for HEVC Coding Unit Partitioning Tree Decision on Many-core Processors , 2014, IEEE Signal Processing Letters.

[12]  Yoram Bresler,et al.  Near Optimal Compressed Sensing of Sparse Rank-One Matrices via Sparse Power Factorization , 2013, ArXiv.

[13]  Zeng-qi Sun,et al.  Biped walking on level ground with torso using only one actuator , 2013, Science China Information Sciences.

[14]  Nicolae Cleju,et al.  Optimized projections for compressed sensing via rank-constrained nearest correlation matrix , 2013, ArXiv.

[15]  Baoju Zhang,et al.  The research of Kronecker product-based measurement matrix of compressive sensing , 2013, EURASIP J. Wirel. Commun. Netw..

[16]  Anru Zhang,et al.  Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices , 2013, IEEE Transactions on Information Theory.

[17]  Jun‐e Feng,et al.  Singular Boolean networks: Semi-tensor product approach , 2012, Science China Information Sciences.

[18]  D. Cheng,et al.  An Introduction to Semi-Tensor Product of Matrices and Its Applications , 2012 .

[19]  Richard G. Baraniuk,et al.  Kronecker Compressive Sensing , 2012, IEEE Transactions on Image Processing.

[20]  Trac D. Tran,et al.  Fast and Efficient Compressive Sensing Using Structurally Random Matrices , 2011, IEEE Transactions on Signal Processing.

[21]  Daizhan Cheng,et al.  Analysis and Control of Boolean Networks , 2011 .

[22]  Daizhan Cheng,et al.  A Linear Representation of Dynamics of Boolean Networks , 2010, IEEE Transactions on Automatic Control.

[23]  A. Robert Calderbank,et al.  Construction of a Large Class of Deterministic Sensing Matrices That Satisfy a Statistical Isometry Property , 2009, IEEE Journal of Selected Topics in Signal Processing.

[24]  Farrokh Marvasti,et al.  Deterministic Construction of Binary, Bipolar, and Ternary Compressed Sensing Matrices , 2009, IEEE Transactions on Information Theory.

[25]  Rayan Saab,et al.  Sparse Recovery by Non-convex Optimization -- Instance Optimality , 2008, ArXiv.

[26]  Trac D. Tran,et al.  Fast compressive imaging using scrambled block Hadamard ensemble , 2008, 2008 16th European Signal Processing Conference.

[27]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[28]  Wotao Yin,et al.  Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[29]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[30]  Lu Gan Block Compressed Sensing of Natural Images , 2007, 2007 15th International Conference on Digital Signal Processing.

[31]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[32]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[33]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[34]  E. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[35]  Saeid Sanei,et al.  A Block-Wise random sampling approach: Compressed sensing problem , 2015 .

[36]  Dongdai Lin,et al.  Stability and Linearization of Multi-valued Nonlinear Feedback Shift Registers , 2015, IACR Cryptol. ePrint Arch..

[37]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[38]  Cheng Xiao-liang,et al.  Algorithms on the sparse solution of under-determined linear systems , 2013 .

[39]  Mark H. Ellisman,et al.  Semi-Automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images , 2012, Neuroinformatics.

[40]  D. Cheng,et al.  Semi-tensor Product of Matrices , 2011 .