Photoaffinity probe‐based antimalarial target identification of artemisinin in the intraerythrocytic developmental cycle of Plasmodium falciparum

Abstract Malaria continues to pose a serious global health threat, and artemisinin remains the core drug for global malaria control. However, the situation of malaria resistance has become increasingly severe due to the emergence and spread of artemisinin resistance. In recent years, significant progress has been made in understanding the mechanism of action (MoA) of artemisinin. Prior research on the MoA of artemisinin mainly focused on covalently bound targets that are alkylated by artemisinin‐free radicals. However, less attention has been given to the reversible noncovalent binding targets, and there is a paucity of information regarding artemisinin targets at different life cycle stages of the parasite. In this study, we identified the protein targets of artemisinin at different stages of the parasite's intraerythrocytic developmental cycle using a photoaffinity probe. Our findings demonstrate that artemisinin interacts with parasite proteins in vivo through both covalent and noncovalent modes. Extensive mechanistic studies were then conducted by integrating target validation, phenotypic studies, and untargeted metabolomics. The results suggest that protein synthesis, glycolysis, and oxidative homeostasis are critically involved in the antimalarial activities of artemisinin. In summary, this study provides fresh insights into the mechanisms underlying artemisinin's antimalarial effects and its protein targets.

[1]  Chen Wang,et al.  Chemical proteomic profiling with photoaffinity labeling strategy identifies antimalarial targets of artemisinin , 2023, Chinese Chemical Letters.

[2]  D. Ménard,et al.  Ring-stage growth arrest: Metabolic basis of artemisinin tolerance in Plasmodium falciparum , 2022, iScience.

[3]  M. Frédérich,et al.  Recent metabolomic developments for antimalarial drug discovery , 2022, Parasitology Research.

[4]  T. Gilberger,et al.  A choline-releasing glycerophosphodiesterase essential for phosphatidylcholine biosynthesis and blood stage development in the malaria parasite , 2022, bioRxiv.

[5]  Alexander V. Statsyuk Inhibiting protein synthesis to treat malaria , 2022, Science.

[6]  L. Deng,et al.  In Situ-Activated Phospholipid-Mimic Artemisinin Prodrug via Injectable Hydrogel Nano/Microsphere for Rheumatoid Arthritis Therapy , 2022, Research.

[7]  Li Dai,et al.  Identification of antimalarial targets of chloroquine by a combined deconvolution strategy of ABPP and MS-CETSA , 2021, Military Medical Research.

[8]  Yoshiki Yamaryo-Botté,et al.  An essential vesicular-trafficking phospholipase mediates neutral lipid synthesis and contributes to hemozoin formation in Plasmodium falciparum , 2021, BMC Biology.

[9]  T. Efferth,et al.  Multi-omics approaches to improve malaria therapy. , 2021, Pharmacological research.

[10]  J. Yates,et al.  Identification of sulfenylation patterns in trophozoite stage Plasmodium falciparum using a non-dimedone based probe. , 2021, Molecular and biochemical parasitology.

[11]  N. Yan,et al.  Orthosteric–allosteric dual inhibitors of PfHT1 as selective antimalarial agents , 2021, Proceedings of the National Academy of Sciences.

[12]  Jianbin Zhang,et al.  Advances in the research on the targets of anti-malaria actions of artemisinin , 2020, Pharmacology & Therapeutics.

[13]  R. Ménard,et al.  Artemisinin Bioactivity and Resistance in Malaria Parasites. , 2019, Trends in parasitology.

[14]  S. Krishna,et al.  A Temporizing Solution to "Artemisinin Resistance". , 2019, The New England journal of medicine.

[15]  H. Kwon,et al.  Reverse Chemical Proteomics Identifies an Unanticipated Human Target of the Antimalarial Artesunate. , 2019, ACS chemical biology.

[16]  J. Yates,et al.  Proteomics and pulse azidohomoalanine labeling of newly synthesized proteins: what are the potential applications? , 2018, Expert review of proteomics.

[17]  F. Nosten,et al.  High-Resolution Single-Cell Sequencing of Malaria Parasites , 2017, bioRxiv.

[18]  Jigang Wang,et al.  Nonradioactive quantification of autophagic protein degradation with L-azidohomoalanine labeling , 2017, Nature Protocols.

[19]  G. Superti-Furga,et al.  Artemisinins Target GABAA Receptor Signaling and Impair α Cell Identity , 2017, Cell.

[20]  D. Wirth,et al.  A Novel Methodology for Bioenergetic Analysis of Plasmodium falciparum Reveals a Glucose-Regulated Metabolic Shift and Enables Mode of Action Analyses of Mitochondrial Inhibitors. , 2016, ACS infectious diseases.

[21]  A. Cowman,et al.  Malaria: Biology and Disease , 2016, Cell.

[22]  Leann Tilley,et al.  Artemisinin Action and Resistance in Plasmodium falciparum. , 2016, Trends in parasitology.

[23]  V. Barton,et al.  A Click Chemistry‐Based Proteomic Approach Reveals that 1,2,4‐Trioxolane and Artemisinin Antimalarials Share a Common Protein Alkylation Profile , 2016, Angewandte Chemie.

[24]  J. Hemingway,et al.  Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7 , 2016, Proceedings of the National Academy of Sciences.

[25]  D. Niekerk,et al.  Targeting glycolysis in the malaria parasite Plasmodium falciparum , 2016, The FEBS journal.

[26]  L. Tilley,et al.  Haemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins , 2016, Journal of Cell Science.

[27]  Bin Liu,et al.  Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum , 2015, Nature Communications.

[28]  Kelly V. Ruggles,et al.  Profiling the Essential Nature of Lipid Metabolism in Asexual Blood and Gametocyte Stages of Plasmodium falciparum. , 2015, Cell host & microbe.

[29]  S. Müller Role and Regulation of Glutathione Metabolism in Plasmodium falciparum , 2015, Molecules.

[30]  J. Vega-Rodríguez,et al.  Implications of Glutathione Levels in the Plasmodium berghei Response to Chloroquine and Artemisinin , 2015, PloS one.

[31]  D. Kyle,et al.  Artemisinin-Resistant Plasmodium falciparum Parasites Exhibit Altered Patterns of Development in Infected Erythrocytes , 2015, Antimicrobial Agents and Chemotherapy.

[32]  D. Kwiatkowski,et al.  Spread of artemisinin resistance in Plasmodium falciparum malaria. , 2014, The New England journal of medicine.

[33]  L. Tilley,et al.  Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum , 2013, BMC Biology.

[34]  L. Tilley,et al.  Altered temporal response of malaria parasites determines differential sensitivity to artemisinin , 2013, Proceedings of the National Academy of Sciences.

[35]  J. Yates,et al.  Protein S-glutathionylation in malaria parasites. , 2011, Antioxidants & redox signaling.

[36]  Aline A. Oliveira,et al.  Antimalarial Activity of Potential Inhibitors of Plasmodium falciparum Lactate Dehydrogenase Enzyme Selected by Docking Studies , 2011, PloS one.

[37]  Richard J. Maude,et al.  Intrahost modeling of artemisinin resistance in Plasmodium falciparum , 2010, Proceedings of the National Academy of Sciences.

[38]  K. Fritz-Wolf,et al.  Redox regulation of Plasmodium falciparum ornithine δ-aminotransferase. , 2010, Journal of molecular biology.

[39]  J. Pelletier,et al.  Target identification using drug affinity responsive target stability (DARTS) , 2009, Proceedings of the National Academy of Sciences.

[40]  M. Fukuda,et al.  Evidence of artemisinin-resistant malaria in western Cambodia. , 2008, The New England journal of medicine.

[41]  Joel S. Freundlich,et al.  The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. , 2008, Cell host & microbe.

[42]  C. Schäfer,et al.  Malaria , 2006, Der Internist.

[43]  M. Mehta,et al.  Malaria parasite‐infected erythrocytes inhibit glucose utilization in uninfected red cells , 2005, FEBS letters.

[44]  S. Kano,et al.  Roles of 1‐Cys peroxiredoxin in haem detoxification in the human malaria parasite Plasmodium falciparum , 2005, The FEBS journal.

[45]  S. Krishna,et al.  Artemisinins: mechanisms of action and potential for resistance. , 2004, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[46]  K. Becker,et al.  Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. , 2004, International journal for parasitology.

[47]  S. Müller,et al.  2-Cys peroxiredoxin PfTrx-Px1 is involved in the antioxidant defence of Plasmodium falciparum. , 2003, Molecular and biochemical parasitology.

[48]  B. Berger,et al.  Characterization of the ornithine aminotransferase from Plasmodium falciparum. , 2001, Molecular and biochemical parasitology.

[49]  H. D. del Portillo,et al.  Malaria parasites contain two identical copies of an elongation factor 1 alpha gene. , 1998, Molecular and biochemical parasitology.

[50]  S. R. Schmid,et al.  Characterization of a putative ornithine aminotransferase gene of Plasmodium falciparum. , 1993, Molecular and biochemical parasitology.

[51]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.

[52]  Edward W. Tate,et al.  Activity-Based Protein Profiling for the Study of Parasite Biology. , 2019, Current topics in microbiology and immunology.

[53]  D. Milner Malaria Pathogenesis. , 2018, Cold Spring Harbor perspectives in medicine.

[54]  I W Sherman,et al.  Amino acid metabolism and protein synthesis in malarial parasites. , 1977, Bulletin of the World Health Organization.