Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid-ocean ridges

[1]  M. Hannington,et al.  Analysis of Sulfides for Gold and Associated Trace Metals by Direct Neutron Activation With a Low‐Flux Reactor , 1991 .

[2]  Yves Fouquet,et al.  Hydrothermal activity in the Lau back-arc basin:Sulfides and water chemistry , 1991 .

[3]  P. Rona,et al.  Geochronology of TAG and Snakepit hydrothermal fields, Mid-Atlantic Ridge: witness to a long and complex hydrothermal history , 1990 .

[4]  G. Massoth,et al.  Submarine venting of phase-separated hydrothermal fluids at Axial Volcano, Juan de Fuca Ridge , 1989, Nature.

[5]  R. Seifert,et al.  Probable modern analogue of Kuroko-type massive sulphide deposits in the Okinawa Trough back-arc basin , 1989, Nature.

[6]  P. Pan,et al.  Co(II)-chloride and -bromide complexes in aqueous solutions up to 5 m NaX and 90°C: Spectrophotometric study and geological implications , 1989 .

[7]  T. Seward,et al.  The stability of hydrosulphido- and sulphido-complexes of Au(I) and Ag(I) at 25°C , 1989 .

[8]  T. Seward,et al.  The adsorption of thio gold(I) complexes by amorphous As2S3 and Sb2S3 at 25 and 90°C☆ , 1989 .

[9]  S. Wood Raman spectroscopic determination of the speciation of ore metals in hydrothermal solutions: I. Speciation of antimony in alkaline sulfide solutions at 25°C , 1989 .

[10]  H. Barnes,et al.  Solubility of gold in aqueous sulfide solutions from 150 to 350°C , 1989 .

[11]  H. Barnes,et al.  The solubility of Ag2S in near-neutral aqueous sulfide solutions at 25 to 300°C☆ , 1989 .

[12]  R. Krupp Solubility of stibnite in hydrogen sulfide solutions, speciation, and equilibrium constants, from 25 to 350°C , 1988 .

[13]  G. Auclair,et al.  Geological setting and mineralogical and geochemical investigations on sulfide deposits near 13°N on the East Pacific Rise , 1988 .

[14]  A. C. Campbell,et al.  Chemistry of hot springs on the Mid-Atlantic Ridge , 1988, Nature.

[15]  W. Shanks,et al.  The composition of massive sulfide deposits from the sediment-covered floor of Escanaba Trough, Gorda Ridge; implications for depositional processes , 1988 .

[16]  M. Hannington,et al.  Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of Axial Seamount, Juan De Fuca Ridge , 1988 .

[17]  M. Tivey,et al.  Submersible investigation of an extinct hydrothermal system on the Galapagos Ridge; sulfide mounds, stockwork zone, and differentiated lavas , 1988 .

[18]  S. Humphris,et al.  Active vents and massive sulfides at 26 degrees N (TAG) and 23 degrees N (Snakepit) on the Mid-Atlantic Ridge , 1988 .

[19]  W. Goodfellow,et al.  Sulfide formation and hydrothermal alteration of hemipelagic sediment in Middle Valley, northern Juan De Fuca Ridge , 1988 .

[20]  I. Jonasson,et al.  Two zinc-rich chimneys from the plume site, southern Juan de Fuca Ridge , 1988 .

[21]  Y. Fouquet,et al.  Filamentous iron-silica deposits from modern and ancient hydrothermal sites , 1988 .

[22]  J. Peter,et al.  Mineralogy, composition, and fluid inclusion microthermometry of sea-floor hydrothermal deposits in the southern trough of Guaymas Basin, Gulf of California , 1988 .

[23]  P. Stoffers,et al.  Hydrothermal silica chimney fields in the Galapagos Spreading Center at 86°W , 1988 .

[24]  A. C. Campbell,et al.  Chemical controls on the composition of vent fluids at 13°–11°N and 21°N, East Pacific Rise , 1988 .

[25]  W. Seyfried,et al.  Mineralization, alteration, and hydrothermal metamorphism of the ophiolite-hosted Turner-Albright sulfide deposit, southwestern Oregon , 1988 .

[26]  M. Hannington,et al.  Gold and native copper in supergene sulphides from the Mid-Atlantic Ridge , 1988, Nature.

[27]  T. Barrett,et al.  The solubility of sphalerite and galena in 1–5 m NaCl solutions to 300°C , 1988 .

[28]  G. Auclair,et al.  Distribution of selenium in high-temperature hydrothermal sulfide deposits at 13 degrees North, East Pacific Rise , 1987 .

[29]  D. Crerar,et al.  Solubility of the assemblage pyrite-pyrrhotite-magnetite-sphalerite-galena-gold-stibnite-bismuthinite-argen- tite-molybdenite in H 2 O-NaCl-CO 2 solutions from 200 degrees to 350 degrees C degrees , 1987 .

[30]  K. V. Damm,et al.  Chemistry of hydrothermal solutions from the southern Juan de Fuca Ridge , 1987 .

[31]  R. Krupp,et al.  The Rotokawa geothermal system, New Zealand; an active epithermal gold-depositing environment , 1987 .

[32]  H. W. Baitis,et al.  Preliminary study of the Turner Albright Zn-Cu-Ag-Au-Co massive sulfide deposit, Josephine County, Oregon , 1987 .

[33]  R. Large,et al.  A chemical model for the concentration of gold in volcanogenic massive sulphide deposits.(CODES publication 12) , 1987 .

[34]  R. Yamada,et al.  Gold-bearing siliceous ore of the Nurukawa kuroko deposit, Akita prefecture , 1987 .

[35]  W. Goodfellow,et al.  Massive sulfides in a sedimented rift valley, northern Juan de Fuca Ridge , 1987 .

[36]  M. Hannington,et al.  Gold in sea-floor polymetallic sulfide deposits , 1986 .

[37]  J. Lange,et al.  Ore paragenesis of recent hydrothermal deposits at the Cocos-Nazca plate boundary (Galápagos Rift) at 85‡ 51' and 85‡ 55' W: Complex massive sulfide mineralizations, non-sulfidic mineralizations and mineralized basalts , 1986 .

[38]  G. Bancroft,et al.  Heavy metal adsorption by sulphide mineral surfaces , 1986 .

[39]  P. Rona,et al.  Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge , 1986, Nature.

[40]  C. Heinrich,et al.  Thermodynamic predictions of the hydrothermal chemistry of arsenic, and their significance for the paragenetic sequence of some cassiterite-arsenopyrite-base metal sulfide deposits , 1986 .

[41]  J. Delaney,et al.  Growth of large sulfide structures on the endeavour segment of the Juan de Fuca ridge , 1986 .

[42]  M. Mottl,et al.  Geologic form and setting of a hydrothermal vent field at lat 10°56′N, East Pacific Rise: A detailed study using Angus and Alvin , 1986 .

[43]  V. Tunnicliffe,et al.  Hydrothermal vents of Explorer Ridge, northeast Pacific , 1986 .

[44]  A. Bocarsly,et al.  Chemical controls on solubility of ore-forming minerals in hydrothermal solutions , 1985 .

[45]  J. Crocket,et al.  A gold-sphalerite association in a volcanogenic base-metal-sulfide deposit near Tilt Cove, Newfoundland , 1985 .

[46]  W. Shanks,et al.  Mineralogy and geochemistry of a sediment‐hosted hydrothermal sulfide deposit from the Southern Trough of Guaymas Basin, Gulf of California , 1985 .

[47]  G. Jean,et al.  An XPS and SEM study of gold deposition at low temperatures on sulphide mineral surfaces: Concentration of gold by adsorption/reduction , 1985 .

[48]  R. Hékinian,et al.  Volcanism and metallogenesis of axial and off-axial structures on the East Pacific Rise near 13 degrees N , 1985 .

[49]  D. Crerar,et al.  Spectra and coordination changes of transition metals in hydrothermal solutions: Implications for ore genesis , 1985 .

[50]  R. Zierenberg,et al.  Massive sulfide deposits at 21°N, East Pacific Rise: Chemical composition, stable isotopes, and phase equilibria , 1984 .

[51]  D. Clague,et al.  Mineralogy and chemistry of massive sulfide deposits from the Juan de Fuca Ridge , 1984 .

[52]  F. Albarède,et al.  Chemistry of solutions from the 13°N East Pacific Rise hydrothermal site , 1984 .

[53]  P. A. Baedecker,et al.  Sea-floor massive sulfide deposits from 21 degrees N East Pacific Rise, Juan de Fuca Ridge, and Galapagos Rift; bulk chemical composition and economic implications , 1983 .

[54]  R. Zierenberg,et al.  Mineralogy and geochemistry of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea , 1983 .

[55]  G. Bancroft,et al.  Gold deposition at low temperature on sulphide minerals , 1982, Nature.

[56]  B. Clark,et al.  The mineralogy and the isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the East Pacific Rise, 21°N latitude , 1981 .

[57]  R. Haymon,et al.  Hot spring deposits on the East Pacific Rise at 21°N: preliminary description of mineralogy and genesis , 1981 .

[58]  R. Hékinian,et al.  Sulfide Deposits from the East Pacific Rise Near 21�N , 1980, Science.

[59]  Robert J Collier,et al.  Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data , 1979 .

[60]  R. Collier,et al.  On the formation of metal-rich deposits at ridge crests , 1979 .

[61]  H. Barnes,et al.  Ore solution chemistry VI; PbS solubility in bisulfide solutions to 300 degrees C , 1979 .

[62]  David L. Williams,et al.  Submarine Thermal Springs on the Gal�pagos Rift , 1979, Science.

[63]  T. Seward The stability of chloride complexes of Silver in hydrothermal solutions up to 350°C , 1976 .

[64]  Takeo Sato,et al.  The Kuroko and Associated Ore Deposits of Japan; A Review of Their Features and Metallogenesis , 1974 .

[65]  R. Hutchinson Volcanogenic Sulfide Deposits and Their Metallogenic Significance , 1973 .

[66]  T. Seward Thio complexes of gold and the transport of gold in hydrothermal ore solutions , 1973 .

[67]  A. J. Ellis,et al.  The Ohaki-Broadlands hydrothermal area, New Zealand; mineralogy and related geochemistry , 1970 .

[68]  Y. Shimazaki,et al.  Mode of Occurrence and Properties of Electrum from Uchinotai-Nishi Ore Deposit, Kosaka Mine, Akita Prefecture , 1969 .

[69]  P. Browne Sulfide mineralization in a Broadlands geothermal drill hole, Taupo volcanic zone, New Zealand , 1969 .

[70]  B. G. Weissberg Gold-silver ore-grade precipitates from New Zealand thermal waters , 1969 .

[71]  P. Herzig,et al.  Hydrothermal mineralization from the Valu Fa Ridge, Lau back-arc basin (SW Pacific) , 1990 .

[72]  M. Hannington,et al.  Gold mineralization in volcanogenic massive sulfides: Implications of data from active hydrothermal vents on the modern seafloor , 1989 .

[73]  C. Mével,et al.  La ride du Snake Pit (dorsale médio-Atlantique, 23°22'N): résultats préliminaires de la campagne HYDROSNAKE , 1989 .

[74]  Steven D. Scott,et al.  Seafloor Polymetallic Sulfides: Scientific Curiosities or Mines of the Future? , 1987 .

[75]  S. Scott,et al.  Ag2S solubility in sulfide solutions up to 250°C , 1987 .

[76]  W. Normark Submarine fissure eruptions and hydrothermal vents on the southern Juan de Fuca Ridge: preliminary observations from the submersible Alvin , 1986 .

[77]  J. Lupton,et al.  Hydrothermal vents on an axis seamount of the Juan de Fuca ridge , 1985, Nature.

[78]  T. Seward,et al.  The formation of lead(II) chloride complexes to 300°C: A spectrophotometric study , 1984 .

[79]  Z. Nawab Red Sea mining: A new era , 1984 .

[80]  J. Edmond,et al.  The Genesis of Hot Spring Deposits on the East Pacific Rise, 21°N , 1983 .

[81]  H. Barnes,et al.  Mineralogy, Geochemistry, and Ore Genesis of Hydrothermal Sediments from the Atlantis II Deep, Red Sea , 1983 .

[82]  D. Singer,et al.  Geologic and grade-tonnage information on volcanic-hosted copper-zinc-lead massive sulfide deposits , 1983 .

[83]  T. Seward Metal complex formation in aqueous solutions at elevated temperatures and pressures , 1981 .

[84]  H. Barnes,et al.  Geochemistry of Hydrothermal Ore Deposits , 1968 .

[85]  L. Bear The mineral resources and mining industry of Cyprus , 1963 .