Particle Representations for Measure-Valued Population Models
暂无分享,去创建一个
[1] Peter Donnelly,et al. A countable representation of the Fleming-Viot measure-valued diffusion , 1996 .
[2] THE BEHAVIOR OF SUPERPROCESSES NEAR EXTINCTION , 1992 .
[3] R. Karandikar,et al. Invariant Measures and Evolution Equations for Markov Processes Characterized Via Martingale Problems , 1993 .
[4] Petar Todorovic,et al. Markov Processes I , 1992 .
[5] N. Karoui,et al. Propriétés de martingales, explosion et représentation de Lévy--Khintchine d'une classe de processus de branchement à valeurs mesures , 1991 .
[6] T. Kurtz. Martingale Problems for Conditional Distributions of Markov Processes , 1998 .
[7] S. Evans,et al. Measure-valued Markov branching processes conditioned on non-extinction , 1990 .
[8] Stewart N. Ethier,et al. Fleming-Viot processes in population genetics , 1993 .
[9] A. Etheridge,et al. A note on superprocesses , 1991 .
[10] S. Evans. Two representations of a conditioned superprocess , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[11] D. Blackwell,et al. An extension of Skorohod’s almost sure representation theorem , 1983 .
[12] J. Pitman. Coalescents with multiple collisions , 1999 .
[13] F. Avram. Weak Convergence of the Variations, Iterated Integrals and Doleans-Dade Exponentials of Sequences of Semimartingales , 1988 .
[14] E. Perkins. On the Martingale Problem for Interactive Measure-Valued Branching Diffusions , 1995 .
[15] P. Protter,et al. Weak Limit Theorems for Stochastic Integrals and Stochastic Differential Equations , 1991 .