Field-Free Switching in Symmetry Breaking Multilayers: The Critical Role of Interlayer Chiral Exchange

It is crucial to realize field-free, deterministic, current-induced switching in spin-orbit torque magnetic random-access memory (SOT-MRAM) with perpendicular magnetic anisotropy (PMA). A tentative solution has emerged recently, which employs the interlayer chiral exchange coupling or the interlayer Dzyaloshinskii-Moriya interaction (i-DMI) to achieve symmetry breaking. We hereby investigate the interlayer DMI in a Pt/Co multilayer system with orthogonally magnetized layers, using repeatedly stacked [Pt/Co]n structure with PMA, and a thick Co layer with in-plane magnetic anisotropy (IMA). We clarify the origin and the direction of such symmetry breaking with relation to the i-DMI effective field, and show a decreasing trend of the said effective field magnitude to the stacking number (n). By comparing the current-induced field-free switching behavior for both PMA and IMA layers, we confirm the dominating role of i-DMI in such field-free switching, excluding other possible mechanisms such as tilted-anisotropy and unconventional spin currents that may have arisen from the symmetry breaking.

[1]  Wangda Li,et al.  Coexistence of spin-orbit torque and unidirectional magnetoresistance effect induced by spin polarization with spin rotation symmetry in Co/Cu/Co structures , 2022, Physical Review B.

[2]  C. Pai,et al.  Growth-Dependent Interlayer Chiral Exchange and Field-Free Switching , 2022, Physical Review Applied.

[3]  C. Pai,et al.  Deep learning for spin-orbit torque characterizations with a projected vector field magnet , 2022, Physical Review Research.

[4]  S. Fukami,et al.  Large Antisymmetric Interlayer Exchange Coupling Enabling Perpendicular Magnetization Switching by an In-Plane Magnetic Field , 2022, Physical Review Applied.

[5]  Yaowen Liu,et al.  Field-Free Spin-Orbit Torque Switching Enabled by the Interlayer Dzyaloshinskii-Moriya Interaction. , 2022, Nano letters.

[6]  Hongxin Yang,et al.  Effect of interlayer Dzyaloshinskii-Moriya interaction on spin structure in synthetic antiferromagnetic multilayers , 2022, Physical Review B.

[7]  Seungmoo Yang,et al.  Field‐Free Switching of Magnetization by Tilting the Perpendicular Magnetic Anisotropy of Gd/Co Multilayers , 2022, Advanced Functional Materials.

[8]  G. Sala,et al.  Chiral Coupling between Magnetic Layers with Orthogonal Magnetization. , 2021, Physical review letters.

[9]  Yen-Lin Huang,et al.  Toward 100% Spin–Orbit Torque Efficiency with High Spin–Orbital Hall Conductivity Pt–Cr Alloys , 2021, ACS Applied Electronic Materials.

[10]  C. Pai,et al.  Large unidirectional magnetoresistance in metallic heterostructures in the spin transfer torque regime , 2021, 2107.07780.

[11]  Yaowen Liu,et al.  Deterministic magnetization switching by spin–orbit torque in a ferromagnet with tilted magnetic anisotropy: A macrospin modeling , 2021 .

[12]  C. Pai,et al.  Spin–orbit torque characterization in a nutshell , 2021, 2103.10634.

[13]  G. Kar,et al.  Field-free switching of magnetic tunnel junctions driven by spin–orbit torques at sub-ns timescales , 2020, Applied Physics Letters.

[14]  Daiki Chiba,et al.  Spin–orbit torque generated by spin–orbit precession effect in Py/Pt/Co tri-layer structure , 2020 .

[15]  C. Pai,et al.  Determination of Spin-Orbit-Torque Efficiencies in Heterostructures with In-Plane Magnetic Anisotropy , 2020, Physical Review Applied.

[16]  Byong‐Guk Park,et al.  Material and Thickness Investigation in Ferromagnet/Ta/CoFeB Trilayers for Enhancement of Spin–Orbit Torque and Field‐Free Switching , 2019, Advanced Electronic Materials.

[17]  C. You,et al.  Long-range chiral exchange interaction in synthetic antiferromagnets , 2018, Nature Materials.

[18]  C. Pai,et al.  Cr -induced Perpendicular Magnetic Anisotropy and Field-Free Spin-Orbit-Torque Switching , 2019, Physical Review Applied.

[19]  R. Cowburn,et al.  Symmetry-breaking interlayer Dzyaloshinskii–Moriya interactions in synthetic antiferromagnets , 2018, Nature Materials.

[20]  C. Pai,et al.  Current-Induced Spin-Orbit Torque and Field-Free Switching in Mo -Based Magnetic Heterostructures , 2018, Physical Review Applied.

[21]  E. Vedmedenko,et al.  Interlayer Dzyaloshinskii-Moriya Interactions. , 2018, Physical review letters.

[22]  M. Stiles,et al.  Spin currents and spin–orbit torques in ferromagnetic trilayers , 2018, Nature Materials.

[23]  K. Ganesh,et al.  Spin Hall effect mediated current-induced deterministic switching in all-metallic perpendicularly magnetized Pt/Co/Pt trilayers , 2017 .

[24]  B. Diény,et al.  Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications , 2017 .

[25]  M. Urbaniak,et al.  Influence of domain structure induced coupling on magnetization reversal of Co/Pt/Co film with perpendicular anisotropy , 2017 .

[26]  Ming-Yang Li,et al.  Strong Rashba-Edelstein Effect-Induced Spin-Orbit Torques in Monolayer Transition Metal Dichalcogenide/Ferromagnet Bilayers. , 2016, Nano letters.

[27]  Plamen Stamenov,et al.  Spin-orbit torque switching without an external field using interlayer exchange coupling. , 2016, Nature nanotechnology.

[28]  H. Ohno,et al.  A spin-orbit torque switching scheme with collinear magnetic easy axis and current configuration. , 2016, Nature nanotechnology.

[29]  C. Pai,et al.  Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy , 2016 .

[30]  B. Koopmans,et al.  Field-free magnetization reversal by spin-Hall effect and exchange bias , 2015, Nature Communications.

[31]  S. Jurga,et al.  Domain wall generated by graded interlayer coupling in Co/Pt/Co film with perpendicular anisotropy , 2015 .

[32]  H. Ohno,et al.  Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. , 2015, Nature materials.

[33]  Abhijit Ghosh,et al.  Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers , 2015, Nature Physics.

[34]  D. Ralph,et al.  Enhancement of Perpendicular Magnetic Anisotropy and Transmission of Spin-Hall-Effect-Induced Spin Currents by a Hf Spacer Layer in W/Hf/CoFeB/MgO Layer , 2014, 1401.4617.

[35]  Kang L. Wang,et al.  Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. , 2013, Nature nanotechnology.

[36]  S. Yuasa,et al.  Ultralow-Voltage Spin-Transfer Switching in Perpendicularly Magnetized Magnetic Tunnel Junctions with Synthetic Antiferromagnetic Reference Layer , 2013 .

[37]  Kevin Garello,et al.  Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction , 2013, 1310.8235.

[38]  H. Ohno,et al.  Magnetic properties of MgO-[Co/Pt] multilayers with a CoFeB insertion layer , 2013 .

[39]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[40]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[41]  D. Ralph,et al.  Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. , 2012, Physical review letters.

[42]  D. Ralph,et al.  Spin transfer torque devices utilizing the giant spin Hall effect of tungsten , 2012, 1208.1711.

[43]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[44]  C. Nan,et al.  High-density magnetoresistive random access memory operating at ultralow voltage at room temperature , 2011, Nature communications.

[45]  G. Beach,et al.  Optimization of out-of-plane magnetized Co/Pt multilayers with resistive buffer layers , 2011 .

[46]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[47]  D. Ralph,et al.  Spin-torque ferromagnetic resonance induced by the spin Hall effect. , 2010, Physical review letters.

[48]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[49]  S. Heinze,et al.  Chiral magnetic order at surfaces driven by inversion asymmetry , 2007, Nature.

[50]  T. Klemmer,et al.  Seed layer control for tilted magnetic recording media , 2006 .

[51]  Hitoshi Kubota,et al.  Giant tunneling magnetoresistance in fully epitaxial body-centered-cubic Co∕MgO∕Fe magnetic tunnel junctions , 2005 .

[52]  K. Tsunekawa,et al.  230% room temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions , 2005, INTERMAG Asia 2005. Digests of the IEEE International Magnetics Conference, 2005..

[53]  Fengyuan Yang,et al.  Oscillatory interlayer coupling in Co/Pt multilayers with perpendicular anisotropy , 2005 .

[54]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[55]  U. Rößler,et al.  Chiral symmetry breaking in magnetic thin films and multilayers. , 2001, Physical review letters.

[56]  Bloemen,et al.  Oscillatory interlayer exchange coupling in Co/Ru multilayers and bilayers. , 1994, Physical review. B, Condensed matter.

[57]  Ernesto E. Marinero,et al.  Magnetic and structural properties of Co/Pt multilayers , 1991 .

[58]  P. Levy,et al.  Role of Anisotropic Exchange Interactions in Determining the Properties of Spin-Glasses , 1980 .

[59]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[60]  B. Diény,et al.  Orange peel coupling in multilayers with perpendicular magnetic anisotropy: Application to (Co/Pt)-based exchange-biased spin-valves , 2004 .

[61]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .