X-Ray and Proton Radiation Effects on 40 nm CMOS Physically Unclonable Function Devices

Total ionizing dose effects are investigated on a physically unclonable function (PUF) based on CMOS breakdown. Devices irradiated to 2 Mrad(SiO<sub>2</sub>) show less than 11% change in current ratio at 1.2 V. The read-out window of programmed PUFs decreases significantly at high-dose proton irradiation, and then recovers back to the original value after annealing. The proton test results for the <italic>p</italic>FET selector, the <italic>unbroken</italic> <italic>n</italic>FET, and the <italic>broken</italic> <italic>n</italic>FET indicate that the threshold-voltage shift of the <italic>p</italic>FET selector contributes mainly to the degradation of the PUF.

[1]  James F. Ziegler,et al.  Terrestrial cosmic rays , 1996, IBM J. Res. Dev..

[2]  Himanshu Kaul,et al.  16.2 A 0.19pJ/b PVT-variation-tolerant hybrid physically unclonable function circuit for 100% stable secure key generation in 22nm CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[3]  Paul C. Kocher,et al.  Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems , 1996, CRYPTO.

[4]  T. Oldham,et al.  Total ionizing dose effects in MOS oxides and devices , 2003 .

[5]  Arjen K. Lenstra,et al.  Ron was wrong, Whit is right , 2012, IACR Cryptol. ePrint Arch..

[6]  E. G. Stassinopoulos,et al.  The space radiation environment for electronics , 1988, Proc. IEEE.

[7]  Martin L. Green,et al.  Precursor ion damage and angular dependence of single event gate rupture in thin oxides , 1998 .

[8]  Ying Su,et al.  A 1.6pJ/bit 96% Stable Chip-ID Generating Circuit using Process Variations , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[9]  Srinivas Devadas,et al.  Silicon physical random functions , 2002, CCS '02.

[10]  W. R. Daasch,et al.  IC identification circuit using device mismatch , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[11]  Srinivas Devadas,et al.  Physical Unclonable Functions and Applications: A Tutorial , 2014, Proceedings of the IEEE.

[12]  David Blaauw,et al.  OxID: On-chip one-time random ID generation using oxide breakdown , 2010, 2010 Symposium on VLSI Circuits.

[13]  Paul C. Kocher,et al.  Differential Power Analysis , 1999, CRYPTO.

[14]  Ingrid Verbauwhede,et al.  Experimental evaluation of Physically Unclonable Functions in 65 nm CMOS , 2012, 2012 Proceedings of the ESSCIRC (ESSCIRC).

[15]  Milos Drutarovský,et al.  True Random Number Generator Embedded in Reconfigurable Hardware , 2002, CHES.

[16]  E. Vandamme,et al.  Impact of MOSFET gate oxide breakdown on digital circuit operation and reliability , 2000 .

[17]  Guido Groeseneken,et al.  New insights in the relation between electron trap generation and the statistical properties of oxide breakdown , 1998 .

[18]  P. O'Neill,et al.  Near-Earth Space Radiation Models , 2013, IEEE Transactions on Nuclear Science.

[19]  Daniel E. Holcomb,et al.  Power-Up SRAM State as an Identifying Fingerprint and Source of True Random Numbers , 2009, IEEE Transactions on Computers.

[20]  J. Barth,et al.  Space, atmospheric, and terrestrial radiation environments , 2003 .

[21]  G. Groeseneken,et al.  Physically unclonable function using CMOS breakdown position , 2017, 2017 IEEE International Reliability Physics Symposium (IRPS).

[22]  Jean-Jacques Quisquater,et al.  ElectroMagnetic Analysis (EMA): Measures and Counter-Measures for Smart Cards , 2001, E-smart.

[23]  Srinivas Devadas,et al.  Security Based on Physical Unclonability and Disorder , 2012 .

[24]  J. R. Srour,et al.  Review of displacement damage effects in silicon devices , 2003 .

[25]  Patrick Schaumont,et al.  Prototype IC with WDDL and Differential Routing - DPA Resistance Assessment , 2005, CHES.

[26]  T. O'Brien,et al.  The Trapped Proton Environment in Medium Earth Orbit (MEO) , 2010, IEEE Transactions on Nuclear Science.

[27]  M. Caussanel,et al.  Doping-Type Dependence of Damage in Silicon Diodes Exposed to X-Ray, Proton, and He $^{+}$ Irradiations , 2007, IEEE Transactions on Nuclear Science.

[28]  Marten van Dijk,et al.  A technique to build a secret key in integrated circuits for identification and authentication applications , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).

[29]  Roel Maes,et al.  Physically Unclonable Functions , 2012, Springer Berlin Heidelberg.

[30]  Daniel E. Holcomb,et al.  Initial SRAM State as a Fingerprint and Source of True Random Numbers for RFID Tags , 2007 .

[31]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[32]  Marty R. Shaneyfelt,et al.  Comparison of charge yield in MOS devices for different radiation sources , 2002 .

[33]  D. Fleetwood Total Ionizing Dose Effects in MOS and Low-Dose-Rate-Sensitive Linear-Bipolar Devices , 2013, IEEE Transactions on Nuclear Science.

[34]  Chaitali Chakrabarti,et al.  Exploiting resistive cross-point array for compact design of physical unclonable function , 2015, 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST).

[35]  Dick James,et al.  The State-of-the-Art in IC Reverse Engineering , 2009, CHES.

[36]  Robert J. Walters,et al.  Damage correlations in semiconductors exposed to gamma, electron and proton radiations , 1993 .

[37]  A. Candelori,et al.  Heavy ion irradiation of thin gate oxides , 2000 .

[38]  G. Edward Suh,et al.  Physical Unclonable Functions for Device Authentication and Secret Key Generation , 2007, 2007 44th ACM/IEEE Design Automation Conference.

[39]  Werner Schindler,et al.  Evaluation Criteria for True (Physical) Random Number Generators Used in Cryptographic Applications , 2002, CHES.