X-Ray and Proton Radiation Effects on 40 nm CMOS Physically Unclonable Function Devices
暂无分享,去创建一个
R. D. Schrimpf | D. Linten | E. Bury | I. Verbauwhede | R. A. Reed | D. M. Fleetwood | H. Gong | peixiong zhao | R. Reed | E. Zhang | D. Linten | D. Fleetwood | I. Verbauwhede | E. Bury | H. Gong | M. Mccurdy | W. Liao | C. Arutt | K. Ni | E. X. Zhang | P. Wang | K. Ni | P. Wang | P. F. Wang | K. H. Chuang | W. Liao | C. N. Arutt | M. W. Mccurdy | K. Chuang
[1] James F. Ziegler,et al. Terrestrial cosmic rays , 1996, IBM J. Res. Dev..
[2] Himanshu Kaul,et al. 16.2 A 0.19pJ/b PVT-variation-tolerant hybrid physically unclonable function circuit for 100% stable secure key generation in 22nm CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).
[3] Paul C. Kocher,et al. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems , 1996, CRYPTO.
[4] T. Oldham,et al. Total ionizing dose effects in MOS oxides and devices , 2003 .
[5] Arjen K. Lenstra,et al. Ron was wrong, Whit is right , 2012, IACR Cryptol. ePrint Arch..
[6] E. G. Stassinopoulos,et al. The space radiation environment for electronics , 1988, Proc. IEEE.
[7] Martin L. Green,et al. Precursor ion damage and angular dependence of single event gate rupture in thin oxides , 1998 .
[8] Ying Su,et al. A 1.6pJ/bit 96% Stable Chip-ID Generating Circuit using Process Variations , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.
[9] Srinivas Devadas,et al. Silicon physical random functions , 2002, CCS '02.
[10] W. R. Daasch,et al. IC identification circuit using device mismatch , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).
[11] Srinivas Devadas,et al. Physical Unclonable Functions and Applications: A Tutorial , 2014, Proceedings of the IEEE.
[12] David Blaauw,et al. OxID: On-chip one-time random ID generation using oxide breakdown , 2010, 2010 Symposium on VLSI Circuits.
[13] Paul C. Kocher,et al. Differential Power Analysis , 1999, CRYPTO.
[14] Ingrid Verbauwhede,et al. Experimental evaluation of Physically Unclonable Functions in 65 nm CMOS , 2012, 2012 Proceedings of the ESSCIRC (ESSCIRC).
[15] Milos Drutarovský,et al. True Random Number Generator Embedded in Reconfigurable Hardware , 2002, CHES.
[16] E. Vandamme,et al. Impact of MOSFET gate oxide breakdown on digital circuit operation and reliability , 2000 .
[17] Guido Groeseneken,et al. New insights in the relation between electron trap generation and the statistical properties of oxide breakdown , 1998 .
[18] P. O'Neill,et al. Near-Earth Space Radiation Models , 2013, IEEE Transactions on Nuclear Science.
[19] Daniel E. Holcomb,et al. Power-Up SRAM State as an Identifying Fingerprint and Source of True Random Numbers , 2009, IEEE Transactions on Computers.
[20] J. Barth,et al. Space, atmospheric, and terrestrial radiation environments , 2003 .
[21] G. Groeseneken,et al. Physically unclonable function using CMOS breakdown position , 2017, 2017 IEEE International Reliability Physics Symposium (IRPS).
[22] Jean-Jacques Quisquater,et al. ElectroMagnetic Analysis (EMA): Measures and Counter-Measures for Smart Cards , 2001, E-smart.
[23] Srinivas Devadas,et al. Security Based on Physical Unclonability and Disorder , 2012 .
[24] J. R. Srour,et al. Review of displacement damage effects in silicon devices , 2003 .
[25] Patrick Schaumont,et al. Prototype IC with WDDL and Differential Routing - DPA Resistance Assessment , 2005, CHES.
[26] T. O'Brien,et al. The Trapped Proton Environment in Medium Earth Orbit (MEO) , 2010, IEEE Transactions on Nuclear Science.
[27] M. Caussanel,et al. Doping-Type Dependence of Damage in Silicon Diodes Exposed to X-Ray, Proton, and He $^{+}$ Irradiations , 2007, IEEE Transactions on Nuclear Science.
[28] Marten van Dijk,et al. A technique to build a secret key in integrated circuits for identification and authentication applications , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).
[29] Roel Maes,et al. Physically Unclonable Functions , 2012, Springer Berlin Heidelberg.
[30] Daniel E. Holcomb,et al. Initial SRAM State as a Fingerprint and Source of True Random Numbers for RFID Tags , 2007 .
[31] Alfred Menezes,et al. Handbook of Applied Cryptography , 2018 .
[32] Marty R. Shaneyfelt,et al. Comparison of charge yield in MOS devices for different radiation sources , 2002 .
[33] D. Fleetwood. Total Ionizing Dose Effects in MOS and Low-Dose-Rate-Sensitive Linear-Bipolar Devices , 2013, IEEE Transactions on Nuclear Science.
[34] Chaitali Chakrabarti,et al. Exploiting resistive cross-point array for compact design of physical unclonable function , 2015, 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST).
[35] Dick James,et al. The State-of-the-Art in IC Reverse Engineering , 2009, CHES.
[36] Robert J. Walters,et al. Damage correlations in semiconductors exposed to gamma, electron and proton radiations , 1993 .
[37] A. Candelori,et al. Heavy ion irradiation of thin gate oxides , 2000 .
[38] G. Edward Suh,et al. Physical Unclonable Functions for Device Authentication and Secret Key Generation , 2007, 2007 44th ACM/IEEE Design Automation Conference.
[39] Werner Schindler,et al. Evaluation Criteria for True (Physical) Random Number Generators Used in Cryptographic Applications , 2002, CHES.