Identification of the Dilute Regime in Particle Sedimentation

We investigate the dynamics of rigid, spherical particles of radius R sinking in a viscous fluid. Both the inertia of the particles and the fluid are neglected. We are interested in a large number N of particles with average distance d≫R. We investigate in which regime (in terms of N and R/d) the particles do not significantly interact and approximately sink like single particles. We rigorously establish the lower bound for the critical number Ncrit of particles. This lower bound agrees with the heuristically expected Ncrit in terms of its scaling in R/d. The main difficulty lies in showing that the particles cannot get significantly closer over a relevant time scale. We use the method of reflection for the Stokes operator to bound the strength of the particle interaction.

[1]  Giovanni Russo,et al.  Kinetic Theory for Bubbly Flow I: Collisionless case , 1996, SIAM J. Appl. Math..

[2]  Giovanni Russo,et al.  Kinetic Theory for Bubbly Flow II: Fluid Dynamic Limit , 1996, SIAM J. Appl. Math..

[3]  Pierre-Emmanuel Jabin,et al.  Notes on Mathematical Problems on the Dynamics of Dispersed Particles Interacting through a Fluid , 2000 .

[4]  H. D. Victory,et al.  The convergence theory of particle-in-cell methods for multidimensional VLASOV-POISSON systems , 1991 .

[5]  B. Maury Regular Article: Direct Simulations of 2D Fluid-Particle Flows in Biperiodic Domains , 1999 .

[6]  脇屋 正一,et al.  J. Happel and H. Brenner: Low Reynolds Number Hydrodynamics, Prentice-Hall, 1965, 553頁, 16×23cm, 6,780円. , 1969 .

[7]  George Papanicolaou,et al.  Dynamic Theory of Suspensions with Brownian Effects , 1983 .

[8]  J. Batt N-particle approximation to the nonlinear Vlasov–Poisson system , 2001 .

[9]  F. Feuillebois Sedimentation in a dispersion with vertical inhomogeneities , 1984, Journal of Fluid Mechanics.

[10]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[11]  Henar Herrero,et al.  On The Motion of Dispersed Balls in a Potential Flow: A Kinetic Description of the Added Mass Effect , 1999, SIAM J. Appl. Math..

[12]  V. N. Starovoitov,et al.  ON A MOTION OF A SOLID BODY IN A VISCOUS FLUID. TWO-DIMENSIONAL CASE. , 1999 .

[13]  Zerner Neuere Methoden und Ergebnisse in der Hydrodynamik , 1928 .

[14]  B. Desjardins,et al.  On Weak Solutions for Fluid‐Rigid Structure Interaction: Compressible and Incompressible Models , 1999 .

[15]  G. Batchelor Sedimentation in a dilute dispersion of spheres , 1972, Journal of Fluid Mechanics.

[16]  Stephen Wollman On the Approximation of the Vlasov-Poisson System by Particle Methods , 2000, SIAM J. Numer. Anal..

[17]  Thomas Y. Hou,et al.  Convergence of the point vortex method for the 2-D euler equations , 1990 .

[18]  J. Keller,et al.  Particle distribution functions in suspensions , 1989 .

[19]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[20]  E. J. Hinch,et al.  An averaged-equation approach to particle interactions in a fluid suspension , 1977, Journal of Fluid Mechanics.

[21]  R. Illner,et al.  Global validity of the Boltzmann equation for two- and three-dimensional rare gas in vacuum: Erratum and improved result , 1989 .

[22]  D. Serre,et al.  Chute libre d’un solide dans un fluide visqueux incompressible. existence , 1987 .

[23]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .