An introduction to the BFS method and its use to model binary NiAl alloys

We introduce the Bozzolo–Ferrante–Smith (BFS) method for alloys as a computationally efficient tool for aiding in the process of alloy design. An intuitive description of the BFS method is provided, followed by a formal discussion of its implementation. The method is applied to the study of the defect structure of NiAl binary alloys. The groundwork is laid for a detailed progression to higher order NiAl-based alloys linking theoretical calculations and computer simulations based on the BFS method and experimental work validating each step of the alloy design process.

[1]  M. M. Arer,et al.  Atomic ordering characteristics of Ni3Al intermetallics with substitutional ternary additions , 1997 .

[2]  Stark,et al.  First-principles calculation of the Ag-Cu phase diagram. , 1991, Physical review. B, Condensed matter.

[3]  Good,et al.  Surface segregation in Cu-Ni alloys. , 1993, Physical review. B, Condensed matter.

[4]  Ferrante,et al.  Growth of Au on Ni(110): A semiempirical modeling of surface alloy phases. , 1995, Physical Review B (Condensed Matter).

[5]  J. Ferrante,et al.  Bulk properties of Ni3Al (γ′) with Cu and Au additions , 1995 .

[6]  M. Kogachi,et al.  Determination of long range order and vacancy content in the NiAl β′-phase alloys by x-ray diffractometry , 1992 .

[7]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[8]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[9]  R. Noebe,et al.  Physical and mechanical properties of the B2 compound NiAl , 1993 .

[10]  F. Froes Structural intermetallics , 1989 .

[11]  H. Bakker,et al.  Extension of Miedema's semiempirical model to estimates of the formation enthalpies of point defects in intermetallic compounds with the B2 structure , 1997 .

[12]  N. S. Golosov,et al.  Theory of order-disorder transformation in binary systems of the Cu-Au type-I , 1973 .

[13]  中国科学院 Science in China. Series E, Technological sciences , 1996 .

[14]  Michael I. Baskes,et al.  Determination of modified embedded atom method parameters for nickel , 1997 .

[15]  J. Ferrante,et al.  Modelling of surfaces. I. Monatomic metallic surfaces using equivalent crystal theory , 1994 .

[16]  Christopher M Wolverton,et al.  First-principles theory of short-range order in size-mismatched metal alloys: Cu-Au, Cu-Ag, and Ni-Au , 1998 .

[17]  G. M. Stocks,et al.  Evaluation of isomorphous models of alloys , 1998 .

[18]  R. Evershed,et al.  Mat Res Soc Symp Proc , 1995 .

[19]  Watanabe,et al.  Electronic theory of the alloy phase stability of Cu-Ag, Cu-Au, and Ag-Au systems. , 1987, Physical review. B, Condensed matter.

[20]  Ryoichi Kikuchi,et al.  Superposition approximation and natural iteration calculation in cluster‐variation method , 1974 .

[21]  S. J. Zhou,et al.  Embedded atom calculations of unstable stacking fault energies and surface energies in intermetallics , 1997 .

[22]  R. Noebe,et al.  Modelling of the defect structure of -NiAl , 1995 .

[23]  Smith,et al.  Method for calculating alloy energetics. , 1992, Physical review. B, Condensed matter.

[24]  N. Chen,et al.  Interatomic potentials between distinct atoms from first-principles calculation and lattice-inversion method , 1997 .

[25]  G. Ackland,et al.  Calculated energies and relaxations of the low-index planes of ordered Cu3Au , 1992 .

[26]  Smith,et al.  Equivalent-crystal theory of metal and semiconductor surfaces and defects. , 1991, Physical review. B, Condensed matter.