Online payload identification for quadruped robots

The identification of inertial parameters is crucial to achieve high-performance model-based control of legged robots. The inertial parameters of the legs are typically not altered during expeditions and therefore are best identified offline. On the other hand, the trunk parameters depend on the modules mounted on the robot, like a motor to provide the hydraulic power, or different sets of cameras for perception. This motivates the use of recursive approaches to identify online mass and the position of the Center of Mass (CoM) of the robot trunk, when a payload change occurs. We propose two such approaches and analyze their robustness in simulation. Furthermore, experimental trials on our 80-kg quadruped robot HyQ show the applicability of our strategies during locomotion to cope with large payload changes that would otherwise severely compromise the balance of the robot.

[1]  Ferdinando Cannella,et al.  Design of HyQ – a hydraulically and electrically actuated quadruped robot , 2011 .

[2]  Scott Kuindersma,et al.  Modeling and Control of Legged Robots , 2016, Springer Handbook of Robotics, 2nd Ed..

[3]  Scott Kuindersma,et al.  An efficiently solvable quadratic program for stabilizing dynamic locomotion , 2013, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[4]  Henk Nijmeijer,et al.  Experimental comparison of parameter estimation methods in adaptive robot control , 1995, Autom..

[5]  M. Gautier Numerical calculation of the base inertial parameters of robots , 1991, J. Field Robotics.

[6]  Gentiane Venture,et al.  Identifiability and identification of inertial parameters using the underactuated base-link dynamics for legged multibody systems , 2014, Int. J. Robotics Res..

[7]  Rui Pedro Duarte Cortesão,et al.  Physical feasibility of robot base inertial parameter identification: A linear matrix inequality approach , 2014, Int. J. Robotics Res..

[8]  Pieter Abbeel,et al.  Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion , 2007, NIPS.

[9]  Darwin G. Caldwell,et al.  High-slope terrain locomotion for torque-controlled quadruped robots , 2016, Autonomous Robots.

[10]  Benjamin J. Stephens State estimation for force-controlled humanoid balance using simple models in the presence of modeling error , 2011, 2011 IEEE International Conference on Robotics and Automation.

[11]  Weiwei Huang,et al.  3D walking based on online optimization , 2013, 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids).

[12]  Darwin G. Caldwell,et al.  DESIGN OF A HYDRAULICALLY ACTUATED ARM FOR A QUADRUPED ROBOT , 2015 .

[13]  Christopher G. Atkeson,et al.  Estimation of Inertial Parameters of Manipulator Loads and Links , 1986 .

[14]  J. Slotine,et al.  On the Adaptive Control of Robot Manipulators , 1987 .

[15]  Stefan Schaal,et al.  Inertial parameter estimation of floating base humanoid systems using partial force sensing , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[16]  Stefan Schaal,et al.  Compliant quadruped locomotion over rough terrain , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Alexander Herzog,et al.  Experiments with a hierarchical inverse dynamics controller on a torque-controlled humanoid , 2013 .

[18]  Jun Wu,et al.  Review: An overview of dynamic parameter identification of robots , 2010 .

[19]  Daniele Pucci,et al.  iCub Whole-Body Control through Force Regulation on Rigid Non-Coplanar Contacts , 2015, Front. Robot. AI.