Algorithms for Computing Sparse Shifts for Multivariate Polynomials

In this paper, we investigate the problem of finding t-sparse shifts for multivariate polynomials. Given a polynomial f∈ℱ[x1, x2, …, xn] of degree d, and a positive integer t, we consider the problem of representing f(x) as a ?-linear combination of the power products of ui where ui = xi−bi for some bi∈?, an extension of ℱ, for i = 1, …, n, i.e., f = ∑jFjuαj, in which at most t of the Fj are non-zero. We provide sufficient conditions for uniqueness of sparse shifts for multivariate polynomials, prove tight bounds on the degree of the polynomial being interpolated in terms of the sparsity bound t and a bound on the size of the coefficients of the polynomial in the standard representation, and describe two new efficient algorithms for computing sparse shifts for a multivariate polynomial.

[1]  Marek Karpinski,et al.  A Zero-Test and an Interpolation Algorithm for the Shifted Sparse Polynominals , 1993, AAECC.

[2]  Marek Karpinski,et al.  On Zero-Testing and Interpolation of k-Sparse Multivariate Polynomials Over Finite Fields , 1991, Theor. Comput. Sci..

[3]  Walter Baur,et al.  The Complexity of Partial Derivatives , 1983, Theor. Comput. Sci..

[4]  Marek Karpinski,et al.  Existence of short proofs for nondivisibility of sparse polynomials under the extended Riemann hypothesis , 1992, ISSAC '92.

[5]  Richard Zippel,et al.  Interpolating Polynomials from Their Values , 1990, J. Symb. Comput..

[6]  Allan Borodin,et al.  On the decidability of sparse univariate polynomial interpolation , 1990, STOC '90.

[7]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[8]  B. David Saunders,et al.  Sparse Polynomial Interpolation in Nonstandard Bases , 1995, SIAM J. Comput..

[9]  Marek Karpinski,et al.  The Interpolation Problem for k-sparse Sums of Eigenfunctions of Operators , 1991 .

[10]  Erich Kaltofen,et al.  Computing with Polynomials Given By Black Boxes for Their Evaluations: Greatest Common Divisors, Factorization, Separation of Numerators and Denominators , 1990, J. Symb. Comput..

[11]  Erich Kaltofen,et al.  Improved Sparse Multivariate Polynomial Interpolation Algorithms , 1988, ISSAC.

[12]  Marek Karpinski,et al.  Computational Complexity of Sparse Real Algebraic Function Interpolation , 1992 .

[13]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[14]  B. David Saunders,et al.  On computing sparse shifts for univariate polynomials , 1994, ISSAC '94.

[15]  Marek Karpinski,et al.  Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields , 1988, SIAM J. Comput..

[16]  Michael Ben-Or,et al.  A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.

[17]  Erich Kaltofen Single-factor Hensel lifting and its application to the straight-line complexity of certain polynomials , 1987, STOC '87.

[18]  I. Kaplansky An introduction to differential algebra , 1957 .

[19]  Marek Karpinski,et al.  The matching problem for bipartite graphs with polynomially bounded permanents is in NC , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[20]  Marek Karpinski,et al.  Computational Complexity of Sparse Rational Interpolation , 1994, SIAM J. Comput..

[21]  Erich Kaltofen,et al.  On the complexity of computing grobner bases for zero-dimensional polynomial ideals , 1990 .

[22]  Yishay Mansour,et al.  Randomized Interpolation and Approximation of Sparse Polynomials , 1992, SIAM J. Comput..

[23]  Daniel Lazard,et al.  Solving Zero-Dimensional Algebraic Systems , 1992, J. Symb. Comput..