The symmetry of quasiperiodic crystals

Experimentally observed crystals range from periodic crystals, through incommensurately modulated crystals and composite crystals, to quasicrystals and even modulated quasicrystals. How does one characterize in a unified manner the symmetry of all these types of crystals? How does one classify all crystals according to their symmetry? These questions are answered through a review of the Fourier-space approach to crystal symmetry of Rokhsar, Wright, and Mermin. The notion of indistinguishability, which is central to the approach, is introduced and used as the basis for a generalization of the traditional space-group classification scheme, applicable to all types of crystals known to date.

[1]  Wright,et al.  Scale equivalence of quasicrystallographic space groups. , 1988, Physical review. B, Condensed matter.

[2]  Harvey Cohn,et al.  Almost Periodic Functions , 1947 .

[3]  T. Janssen,et al.  The superspace groups for incommensurate crystal structures with a one-dimensional modulation , 1981 .

[4]  R. Withers,et al.  Experimental evidence for and a projection model of a cubic quasi-crystal , 1990 .

[5]  T. Janssen,et al.  Bravais Classes for Incommensurate Crystal Phases , 1983 .

[6]  Aperiodic tilings with non-symmorphic space groups p2jgm , 1988 .

[7]  W. Opechowski,et al.  Crystallographic and Metacrystallographic Groups , 1987, December.

[8]  The two‐dimensional quasicrystallographic space groups with rotational symmetries less than 23‐fold , 1988 .

[9]  S. Smaalen SYMMETRY OF COMPOSITE CRYSTALS , 1991 .

[10]  T. Janssen Crystallography of quasi‐crystals , 1986 .

[11]  N. Mermin,et al.  Bravais classes for the simplest incommensurate crystal phases , 1992 .

[12]  M. Senechal,et al.  Crystalline Symmetries, An informal mathematical introduction , 1990 .

[13]  Sander van Smaalen,et al.  Incommensurate crystal structures , 1995 .

[14]  Wright,et al.  Rudimentary quasicrystallography: The icosahedral and decagonal reciprocal lattices. , 1987, Physical review. B, Condensed matter.

[15]  Wright,et al.  Beware of 46-fold symmetry: The classification of two-dimensional quasicrystallographic lattices. , 1987, Physical review letters.

[16]  D. C. Wright,et al.  The space groups of axial crystals and quasicrystals , 1991 .

[17]  T. Janssen,et al.  Symmetry of incommensurate crystal phases. II. Incommensurate basic structure , 1980 .

[18]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[19]  N. David Mermin,et al.  The space groups of icosahedral quasicrystals and cubic, orthorhombic, monoclinic, and triclinic crystals , 1992 .

[20]  Le Tu Quoc Thang,et al.  The geometry of quasicrystals , 1993 .

[21]  N. Mermin The Symmetry of Crystals , 1997 .

[22]  P. P. Ewald,et al.  Symmetry of Fourier space , 1962 .

[23]  B. Hartley,et al.  Rings, Modules and Linear Algebra , 1972 .

[24]  P. Ryder,et al.  New quasiperiodic phase in Al85Cr15 , 1994 .

[25]  M. Boissieu,et al.  Modulated icosahedral AlFeCu phase: a single-crystal X-ray diffraction study , 1993 .

[26]  A. Yamamoto Unified setting and symbols of superspace groups for composite crystals , 1992 .

[27]  S. Smaalen Superspace Description of Incommensurate Intergrowth Compounds and the Application to Inorganic Misfit Layer Compounds , 1992 .

[28]  T. Janssen,et al.  A note on the superspace groups for one‐dimensionally modulated structures , 1985 .

[29]  S. Smaalen SUPERSPACE-GROUP APPROACH TO THE MODULATED STRUCTURE OF THE INORGANIC MISFIT LAYER COMPOUND (LAS)1.14NBS2 , 1991 .

[30]  A. Yamamoto Determination of composite crystal structures and superspace groups , 1993 .

[31]  J. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .