The symmetry of quasiperiodic crystals
暂无分享,去创建一个
[1] Wright,et al. Scale equivalence of quasicrystallographic space groups. , 1988, Physical review. B, Condensed matter.
[2] Harvey Cohn,et al. Almost Periodic Functions , 1947 .
[3] T. Janssen,et al. The superspace groups for incommensurate crystal structures with a one-dimensional modulation , 1981 .
[4] R. Withers,et al. Experimental evidence for and a projection model of a cubic quasi-crystal , 1990 .
[5] T. Janssen,et al. Bravais Classes for Incommensurate Crystal Phases , 1983 .
[6] Aperiodic tilings with non-symmorphic space groups p2jgm , 1988 .
[7] W. Opechowski,et al. Crystallographic and Metacrystallographic Groups , 1987, December.
[8] The two‐dimensional quasicrystallographic space groups with rotational symmetries less than 23‐fold , 1988 .
[9] S. Smaalen. SYMMETRY OF COMPOSITE CRYSTALS , 1991 .
[10] T. Janssen. Crystallography of quasi‐crystals , 1986 .
[11] N. Mermin,et al. Bravais classes for the simplest incommensurate crystal phases , 1992 .
[12] M. Senechal,et al. Crystalline Symmetries, An informal mathematical introduction , 1990 .
[13] Sander van Smaalen,et al. Incommensurate crystal structures , 1995 .
[14] Wright,et al. Rudimentary quasicrystallography: The icosahedral and decagonal reciprocal lattices. , 1987, Physical review. B, Condensed matter.
[15] Wright,et al. Beware of 46-fold symmetry: The classification of two-dimensional quasicrystallographic lattices. , 1987, Physical review letters.
[16] D. C. Wright,et al. The space groups of axial crystals and quasicrystals , 1991 .
[17] T. Janssen,et al. Symmetry of incommensurate crystal phases. II. Incommensurate basic structure , 1980 .
[18] M. F.,et al. Bibliography , 1985, Experimental Gerontology.
[19] N. David Mermin,et al. The space groups of icosahedral quasicrystals and cubic, orthorhombic, monoclinic, and triclinic crystals , 1992 .
[20] Le Tu Quoc Thang,et al. The geometry of quasicrystals , 1993 .
[21] N. Mermin. The Symmetry of Crystals , 1997 .
[22] P. P. Ewald,et al. Symmetry of Fourier space , 1962 .
[23] B. Hartley,et al. Rings, Modules and Linear Algebra , 1972 .
[24] P. Ryder,et al. New quasiperiodic phase in Al85Cr15 , 1994 .
[25] M. Boissieu,et al. Modulated icosahedral AlFeCu phase: a single-crystal X-ray diffraction study , 1993 .
[26] A. Yamamoto. Unified setting and symbols of superspace groups for composite crystals , 1992 .
[27] S. Smaalen. Superspace Description of Incommensurate Intergrowth Compounds and the Application to Inorganic Misfit Layer Compounds , 1992 .
[28] T. Janssen,et al. A note on the superspace groups for one‐dimensionally modulated structures , 1985 .
[29] S. Smaalen. SUPERSPACE-GROUP APPROACH TO THE MODULATED STRUCTURE OF THE INORGANIC MISFIT LAYER COMPOUND (LAS)1.14NBS2 , 1991 .
[30] A. Yamamoto. Determination of composite crystal structures and superspace groups , 1993 .
[31] J. Cahn,et al. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .