Robust PID Control Using Generalized KYP Synthesis

[1]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[2]  A. Tits,et al.  Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics , 1991 .

[3]  S. Hara,et al.  Robust control synthesis with general frequency domain specifications: static gain feedback case , 2004, Proceedings of the 2004 American Control Conference.

[4]  Franco Blanchini,et al.  Characterization of PID and lead/lag compensators satisfying given H/sub /spl infin// specifications , 2004, IEEE Transactions on Automatic Control.

[5]  Tetsuya Asai,et al.  Simultaneous parametric uncertainty modeling and robust control synthesis by LFT scaling , 2000, Autom..

[6]  S. Hara,et al.  Fixed order controller design via generalized KYP lemma , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[7]  Shankar P. Bhattacharyya,et al.  A new approach to digital PID controller design , 2003, IEEE Trans. Autom. Control..

[8]  T. Iwasaki,et al.  Generalized S-procedure and finite frequency KYP lemma , 2000 .

[9]  P. Suchomski Robust PI and PID controller design in delta domain , 2001 .

[10]  Ming-Tzu Ho,et al.  PID controller design for robust performance , 2003, IEEE Trans. Autom. Control..

[11]  B. Anderson A SYSTEM THEORY CRITERION FOR POSITIVE REAL MATRICES , 1967 .

[12]  C. Knospe,et al.  PID control , 2006, IEEE Control Systems.

[13]  Carsten W. Scherer,et al.  LPV control and full block multipliers , 2001, Autom..

[14]  Massimiliano Mattei,et al.  Robust multivariable PID control for linear parameter varying systems , 2001, Autom..

[15]  Shinji Hara,et al.  MATHEMATICAL ENGINEERING TECHNICAL REPORTS Dynamic Output Feedback Synthesis with General Frequency Domain Specifications , 2005 .

[16]  Tetsuya Iwasaki,et al.  LPV system analysis via quadratic separator for uncertain implicit systems , 2001, IEEE Trans. Autom. Control..

[17]  Kostas Tsakalis,et al.  Integrated system identification and PID controller tuning by frequency loop-shaping , 2001, IEEE Trans. Control. Syst. Technol..

[18]  Shinji Hara,et al.  Generalized KYP lemma: unified frequency domain inequalities with design applications , 2005, IEEE Transactions on Automatic Control.

[19]  Yoshikazu Nishikawa,et al.  A method for auto-tuning of PID control parameters , 1981, Autom..

[20]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[21]  P. Gawthrop Self-tuning PID controllers: Algorithms and implementation , 1986 .

[22]  Weng Khuen Ho,et al.  Tuning of PID controllers based on gain and phase margin specifications , 1995, Autom..

[23]  S. Hara,et al.  Well-posedness of feedback systems: insights into exact robustness analysis and approximate computations , 1998, IEEE Trans. Autom. Control..

[24]  Karl Johan Åström,et al.  PID control design and $H_infty$ loop shaping , 2000 .

[25]  Shinji Hara,et al.  Dynamical system design from a control perspective: finite frequency positive-realness approach , 2003, IEEE Trans. Autom. Control..